首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Starved rats were infused intragastrically via indwelling duodenal cannulae with glucose at a rate of 30 mg/min/kg. The infusate contained [U-13C]glucose at an enrichment of 32 or 17%. At the end of the infusion, after 160 min, glucose and lactate were isolated from arterial and portal blood and from liver, and liver glycogen was isolated and hydrolyzed to glucose. The enrichment in glucose and lactate and the isotopomer distribution in glucose of masses from 180 to 186 were determined by gas chromatography-mass spectrometry (GC-MS). From analysis of these data we determined (a) gluconeogenesis proceeds at half the basal rate in the presence of a large infused glucose load, (b) one-quarter of the hepatic pyruvate pool is derived from nonglucose carbon, (c) half of the labeled molecules in liver glycogen are of mass 186 from the infused glucose and half are of masses 181-183, (d) the contribution of the indirect path from pyruvate when corrected for synthesis from unlabeled pyruvate ranges from 55 to 65%, (e) the rate of pyruvate carboxylase averages 90% that of citrate synthase, and (f) the rate of exchange of oxaloacetate with fumarate is about three times the rate of flux in the Krebs cycle (four times in the "forward" direction), and the enrichment in carbon 1 of oxaloacetate was 2.3 times that in carbon 4. In the Appendix a method to obtain the isotopomer distribution of newly formed glucose and glycogen glucose is described. An algorithm to correct for the contribution of natural abundance of 13C and the presence of 12C in commercial [U-13C]glucose is presented. A novel mathematical analysis to obtain the parameters of the Krebs cycle from the isotopomer distribution is developed in the Appendix. Equations to calculate the relative rates of pyruvate carboxylase (y), and the equilibration of oxaloacetate with fumarate from the isotopomer distribution are derived. Mass isotopomer analysis provides a novel and powerful tool for the study of carbohydrate metabolism and the operation of the Krebs cycle.  相似文献   

2.
This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.  相似文献   

3.
Noninvasive tracing of Krebs cycle metabolism in liver   总被引:6,自引:0,他引:6  
To quantify intrahepatic Krebs cycle metabolism, phenyl acetate, excreted in urine as a glutamine conjugate, was given to healthy subjects infused with [3-14C]lactate. They were studied after 60 h of fasting and when given glucose after an overnight fast. Distributions of 14C in glutamate from urinary phenylacetylglutamine and blood glucose were determined. Corrections to the distributions because of the fixation of 14CO2 formed from the [3-14C]lactate were determined by administering [14C]bicarbonate. Comparisons of distributions in glucose and glutamate support the assumption that the glutamate distributions reflect those in hepatic alpha-ketoglutarate. From the distributions in glutamate, the extent of exchange of labeled with unlabeled carbons and relative flow rates in the cycle in liver were estimated. Dilution of 14C by 12C in the cycle was found in the fasted but not the fed state. In the fasted state, pyruvate carboxylation was estimated to be at least twice the rate of Krebs cycle flux and the rate of pyruvate's decarboxylation less than 1/25 the rate of its carboxylation. In the fed state, the rate of decarboxylation was estimated to be between one-sixth and one-half the rate of carboxylation. The rate of conversion of oxalacetate to fumarate in both states appeared to be greater than 6 times the rate of Krebs cycle flux.  相似文献   

4.
The metabolism of [1-13C]glucose in the vegetative mycelium of the ectomycorrhizal ascomycete Tuber borchii was studied in order to characterize the biochemical pathways for the assimilation of glucose and amino acid biosynthesis. The pathways were characterized using nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose labeling. The enzymes of mannitol cycle and ammonium assimilation were also evaluated. The majority of the 13C label was incorporated into mannitol and this polyol was formed via a direct route from absorbed glucose. Amino acid biosynthesis was also an important sink of assimilated carbon and 13C was mainly incorporated into alanine and glutamate. From this intramolecular 13C enrichment, it is concluded that pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase and pyruvate carboxylase before entering the Krebs cycle. The transfer of 13C-labeled mycelium on [12C]glucose showed that mannitol, alanine, and glutamate carbon were used to synthesize glutamine and arginine that likely play a storage role.  相似文献   

5.
Malaise  W.J.  Ladrière  L.  Jijakli  H.  Laatikainen  R.  Niemitz  M.  Verbruggen  I.  Biesernans  M.  Willem  R. 《Molecular and cellular biochemistry》1998,189(1-2):137-144
Hepatocytes prepared from overnight fasted rats were incubated for 120 min in the presence of the dimethyl ester of [2,3-13C]succinic acid (10 mM). The identification and quantification of 13C-enriched metabolites in the incubation medium were performed by a novel computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints. The generation of 13C-labelled metabolites, including succinate, fumarate, malate, lactate, alanine, aspartate and glucose accounted for about half of the initial amount of the ester present in the incubation medium. A fair correlation was observed between the experimental abundance of each 13C-labelled glucose isotopomer and the corresponding values derived from a model for the metabolism of [2,3-13C]succinate. Newly formed glucose was more efficiently labelled in the carbon C5 than C2, as well as the carbon C6 than C1, supporting the concept that D-glyceraldehyde-3-phosphate may undergo enzyme-to-enzyme channelling between glyceraldehyde-3-phosphate dehydrogenase and phosphofructoaldolase.  相似文献   

6.
Peptostreptococcus elsdenii, a strict anaerobe from the rumen, was grown on a medium containing yeast extract and [1-(14)C]- or [2-(14)C]-lactate. Radioisotope from lactate was found in all cell fractions, but mainly in the protein. The label in the protein fraction was largely confined to a few amino acids: alanine, serine, aspartic acid, glutamic acid and diaminopimelic acid. The alanine, serine, aspartic acid and glutamic acid were separated, purified and degraded to establish the distribution of (14)C from lactate within the amino acid molecules. The labelling patterns in alanine and serine suggested their formation from lactate without cleavage of the carbon chain. The pattern in aspartic acid suggested formation by condensation of a C(3) unit derived directly from lactate with a C(1) unit, probably carbon dioxide. The distribution in glutamic acid was consistent with two possible pathways of formation: (a) by the reactions of the tricarboxylic acid cycle leading from oxaloacetate to 2-oxoglutarate, followed by transamination; (b) by a pathway involving the reaction sequence 2 acetyl-CoA-->crotonyl-CoA-->glutaconate-->glutamate.  相似文献   

7.
13C-n.m.r. spectroscopy and g.c.-m.s. were used to determine the metabolic fate of glutamate carbon in rat kidney. The main purpose was to characterize the effect of chronic metabolic acidosis on the utilization of glutamate carbon. Renal tubules obtained from normal and chronically acidotic rats were incubated in Krebs buffer, pH 7.4, in the presence of 2.5 mM-[3-13C]glutamate. During the course of incubation the concentrations of total glucose and NH3 were significantly (P less than 0.05) higher in tissue from acidotic rats. The levels of some tricarboxylic-acid-cycle intermediates were higher (P less than 0.05) in control tissue. In control tissue, 13C-n.m.r. spectra demonstrated a significantly higher rate of 13C appearance of aspartate, glutamine and [2,4-13C]glutamate. However, in acidosis the resonances of [13C]glucose carbon atoms were significantly higher. In the control, approx. 15% of glutamate carbon was accounted for by [13C]glucose formation as against 30% in chronic acidosis. However, in control tissue, 44% of glutamate carbon utilization was accounted for by recycling to glutamate and formation of aspartate, glutamine and GABA. In acidosis, only 11% was so recovered. Analysis of 15NH3 formation during the course of incubation with 2.5 mM-[15N]glutamate demonstrated a positive association between the appearance of [13C]glucose and 15NH3 both in the control and in acidosis. The data suggest that the control of gluconeogenesis and ammoniagenesis in acidosis is, in part, referable to a diminution in the rate of the reductive amination of alpha-oxoglutarate, that of the transamination reaction and that of glutamine synthesis.  相似文献   

8.
13C NMR of isotopically enriched metabolites has been used to study the metabolism of Microbacterium ammoniaphilum, a bacterium which excretes large quantities of L-glutamic acid into the medium. Biosynthesis from 90% [1-13C]glucose results in relatively high specificity of the label, with [2,4-13C2]glutamate as the major product. The predominant biosynthetic pathway for synthesis of glutamate from glucose was determined to be the Embden Meyerhof glycolytic pathway followed by P-enolpyruvate carboxylase and the first third of the Krebs cycle. Different metabolic pathways are associated with different correlations in the enrichment of the carbons, reflected in the spectrum as different 13C-13C scalar multiplet intensities. Hence, intensity and 13C-13C multiplet analysis allows quantitation of the pathways involved. Although blockage of the Krebs cycle at the alpha-ketoglutarate dehydrogenase step is the basis for the accumulation of glutamate, significant Krebs cycle activity was found in glucose grown cells, and extensive Krebs cycle activity in cells metabolizing [1-13C]acetate. In addition to the observation of the expected metabolites, the disaccharide alpha, alpha-trehalose and alpha, beta-glucosylamine were identified from the 13C NMR spectra.  相似文献   

9.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

10.
The basic metabolic pathways of lysine biosynthesis in Brevibacterium flavum, a strain which excretes excessive amounts of L-lysine, have been followed by using two 13C-labeled precursors. 13C- and 1H-NMR spectroscopies in conjunction with gas chromatography mass spectrometry (GC-MS) have revealed the various metabolic pathways leading to L-[13C]lysine. Discrete metabolic pathways give rise to distinct labeling patterns. L-Lysine resulting from [1-13C]glucose fermentation is relatively specifically labeled: L-[3,5-13C]lysine is the main product. Experimental and theoretical approaches based on the 13C-enrichment values of intracellular glutamate, a major intermediate metabolite, allowed us to assess the relative contribution of the major metabolic pathways forming lysine. The labeling pattern of glutamate reflects the isotope distribution in 2-oxoglutarate. When [2-13C]acetate is used as the sole carbon source in the culture, the energy-producing steps of the Krebs cycle are essential. The higher activity of the Krebs cycle, when endogenous carbohydrates are exhausted from the culture, is indicated by the increased 13C enrichment in C-1 of lysine and reveal a high content of isotopomers of four, five and six 13C atoms in the lysine molecule, pointing out that the four-carbon intermediates of the cycle are being derived from the glyoxylate shunt pathway. Such a phenomenon does not occur in glucose fermentation. GC-MS analyses of 13C enrichments and isotopomer distributions in metabolites and end products are in good agreement with the predicted contribution of each metabolic pathway. This new methodological approach of combined NMR and GC-MS has been demonstrated to be applicable to various other metabolic studies.  相似文献   

11.
[2-13C]Succinate has been used to examine the metabolic carbon flux from the Krebs cycle in rat renal proximal convoluted tubular (PCT) cells under physiological and pathophysiological conditions. Therefore, we developed a mathematical model that enabled us to determine the metabolic fluxes of the Krebs cycle. A mathematical model for the calculation of flux from [2-13C]succinate was used to determine fluxes in rat PCT cells during chronic acidosis in the presence and absence of 0.1 mM angiotensin II. The relative carbon efflux via glutamate dehydrogenase in rat renal PCT cells increases during chronic acidosis from 0.27 to 0.39, whereas this carbon flux is not affected by the presence of peptide hormone angiotensin II in the incubation medium. The fraction of intermediate 13C-labelled oxaloacetate transformed into the phosphoenolpyruvate and aspartate pools increases significantly from 0.41 to 0.57 in the case of chronic acidosis. The carbon efflux is not affected by angiotensin II. The 13C-NMR data also show that the carbon efflux through phosphoenolpyruvate carboxykinase increases from 0.35 to 0.56 in rat renal PCT cells derived from chronic acidotic animals, as well as in the presence of angiotensin II. The present results indicate that angiotensin II affects only the flux through phosphoenolcarboxykinase, whereas chronic acidosis increases the flux through phosphoenolpyruvate carboxykinase as well as the gluconeogenic flux.  相似文献   

12.
The effects of hypoxia on the metabolism of the central nervous system were investigated in rats submitted to a low oxygen atmosphere (8% O(2); 92% N(2)). [1-(13)C]glucose and [2-(13)C]acetate were used as substrates, this latter being preferentially metabolized by glial cells. After 1-h substrate infusion, the incorporation of 13C in brain metabolites was determined by NMR spectroscopy. Under hypoxia, an important hyperglycemia was noted. As a consequence, when using labeled glucose, the specific enrichment of brain glucose C1 was lower (48.2+/-5.1%) than under normoxia (66.9+/-2.5%). However, relative to this specific enrichment, the (13)C incorporation in amino acids was increased under hypoxia. This suggested primarily a decreased exchange between blood and brain lactate. The glutamate C2/C4 enrichment ratio was higher under hypoxia (0.62+/-0.01) than normoxia (0.51+/-0.06), indicating a lower glutamate turnover relative to the neuronal TCA cycle activity. The glutamine C2/C4 enrichment ratio was also higher under hypoxia (0.87+/-0.07 instead of 0.65+/-0.11), indicating a new balance in the contributions of different carbon sources at the acetyl-CoA level. When using [2-(13)C]acetate as substrate, no difference in glutamine enrichment appeared under hypoxia, whereas a significant decrease in glutamate, aspartate, alanine and lactate enrichments was noted. This indicated a lower trafficking between astrocytes and neurons and a reduced tricarboxylic acid cycle intermediate recycling of pyruvate.  相似文献   

13.
An in situ and in vivo surface coil 13C NMR study was performed to study hepatic glycogen synthesis from [3-13C]alanine and [1-13C]glucose administered by intraduodenal infusion in 18-h fasted male Sprague-Dawley rats. Combined, equimolar amounts of alanine and glucose were given. Hepatic appearance and disappearance of substrate and concurrent glycogen synthesis was followed over 150 min, with 5-min time resolution. Active glycogen synthesis from glucose via the direct (glucose----glycogen) and indirect (glucose----lactate----glycogen) pathways and from alanine via gluconeogenesis was observed. The indirect pathway of glycogen synthesis from [1-13C]glucose accounted for 30% (+/- 6 S.E.) of total glycogen formed from labeled glucose. This estimate does not take into account dilution of label in the hepatic oxaloacetate pool and is, therefore, somewhat uncertain. Hepatic levels of [3-13C]alanine achieved were significantly lower than levels of [1-13C]glucose in the liver, and the period of active glycogen synthesis from [3-13C]alanine was longer than from glucose. However, the overall pseudo-first-order rate constant during the period of active glycogen synthesis from [3-13C]alanine (0.075 min-1 +/- 0.026 S.E.) was almost 3 times that from [1-13C]glucose via the direct pathway (0.025 min-1 +/- 0.005 S.E.). The most likely reason for the small rate constant governing direct glycogen formation from duodenally administered glucose compared to that from duodenally administered alanine is a low level of glucose phosphorylating capacity in the liver.  相似文献   

14.
Previous attempts to account for the labelling in vivo of liver metabolites associated with the citrate cycle and gluconeogenesis have foundered because proper allowance was not made for the heterogeneity of the liver. In the basal state (anaesthetized after 24h starvation) this heterogeneity is minimal, and we show that labelling by [14C]bicarbonate can be interpreted unambiguously. [14C]Bicarbonate was infused to an isotopic steady state, and measurements were made of specific radioactivities of blood bicarbonate, alanine, glycerol and lactate, of liver alanine and lactate, and of individual carbon atoms in blood glucose and liver aspartate, citrate and malate. (Existing methods for several of these measurements were extensively modified.) The results were combined with published rates of gluconeogenesis, uptake of gluconeogenic precursors by the liver, and citrate-cycle flux, all measured under similar conditions, and with estimates of other rates made from published data. To interpret the results, three ancillary measurements were made: the rate of CO2 exchange by phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) under conditions that simulated those in vivo; the 14C isotope effect in the pyruvate carboxylase (EC 6.4.1.1) reaction (14C/12C = 0.992 +/- 0.008; S.E.M., n = 8); the ratio of labelling by [2-14C]- to that by [1-14C]-pyruvate of liver glutamate 1.5 min after injection. This ratio, 3.38, is a measure of the disequilibrium in the mitochondria between malate and oxaloacetate. The data were analysed with due regard to experimental variance, uncertainties in values of fluxes measured in vitro, hepatic heterogeneity and renal glucose output. The following conclusions were reached. The results could not be explained if CO2 fixation was confined to pyruvate carboxylase and there was only one, well-mixed, pool of oxaloacetate in the mitochondria. Addition of the other carboxylation reactions, those of PEPCK, isocitrate dehydrogenase (EC 1.1.1.42) and malic enzyme (EC 1.1.1.40), was not enough. Incomplete mixing of mitochondrial oxaloacetate had to be assumed, i.e. that there was metabolic channelling of oxaloacetate formed from pyruvate towards gluconeogenesis. There was some evidence that malate exchange across the mitochondrial membrane might also be channelled, with incomplete mixing with that in the citrate cycle. Calculated rates of exchange of CO2 by PEPCK were in agreement with those measured in vitro, with little or no activation by Fe2+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO2 fixation is an important component of the carbon metabolism in S. brunnea, and it is likely that this anaplerotic role is particularly prevalent during NH4+ assimilation. The most relevant information resulting from this investigation is (a) the occurrence of the mannitol cycle, (b) a large part of the trehalose pool is synthesized after the cycling of glucose-carbon through the mannitol cycle, and (c) pyruvate (or phosphoenolpyruvate) carboxylation plays an important role in the primary metabolism of glucose-fed mycelia.  相似文献   

16.
Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast.   总被引:1,自引:0,他引:1  
The utilization of pyruvate and acetate by Saccharomyces cerevisiae was examined using 13C and 1H NMR methodology in intact wild-type yeast cells and mutant yeast cells lacking Krebs tricarboxylic acid (TCA) cycle enzymes. These mutant cells lacked either mitochondrial (NAD) isocitrate dehydrogenase (NAD-ICDH1),alpha-ketoglutarate dehydrogenase complex (alpha KGDC), or mitochondrial malate dehydrogenase (MDH1). These mutant strains have the common phenotype of being unable to grow on acetate. [3-13C]-Pyruvate was utilized efficiently by wild-type yeast with the major intermediates being [13C]glutamate, [13C]acetate, and [13C]alanine. Deletion of any one of these Krebs TCA cycle enzymes changed the metabolic pattern such that the major synthetic product was [13C]galactose instead of [13C]glutamate, with some formation of [13C]acetate and [13C]alanine. The fact that glutamate formation did not occur readily in these mutants despite the metabolic capacity to synthesize glutamate from pyruvate is difficult to explain. We discuss the possibility that these data support the metabolon hypothesis of Krebs TCA cycle enzyme organization.  相似文献   

17.
1. The metabolism of L-alanine was studied in isolated guinea-pig kidney-cortex tubules. 2. In contrast with previous conclusions of Krebs [(1935) Biochem. J. 29, 1951-1969], glutamine was found to be the main carbon and nitrogenous product of the metabolism of alanine (at 1 and 5 mM). Glutamate and ammonia were only minor products. 3. At neither concentration of alanine was there accumulation of glucose, glycogen, pyruvate, lactate, aspartate or tricarboxylic acid-cycle intermediates. 4. Carbon-balance calculations and the release of 14CO2 from [U-14C]alanine indicate that oxidation of the alanine carbon skeleton occurred at both substrate concentrations. 5. A pathway involving alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, pyruvate carboxylase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of alanine into glutamine. 6. Strong evidence for this pathway was obtained by: (i) suppressing alanine removal by amino-oxyacetate, and inhibitor of transaminases, (ii) measuring the release of 14CO2 from [1-14C]alanine, (iii) the use of L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from alanine, and (iv) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from alanine. 7. In this pathway, the central role of pyruvate carboxylase, which explains the discrepancy between our results and those of Krebs (1935), was also demonstrated.  相似文献   

18.
Abstract: Nuclear magnetic resonance (NMR) was used to study the metabolic pathways involved in the conversion of glucose to glutamate, γ-aminobutyrate (GABA), glutamine, and aspartate. d -[1-13C]Glucose was administered to rats intraperitoneally, and 6, 15, 30, or 45 min later the rats were killed and extracts from the forebrain were prepared for 13C-NMR analysis and amino acid analysis. The absolute amount of 13C present within each carbon-atom pool was determined for C-2, C-3, and C-4 of glutamate, glutamine, and GABA, for C-2 and C-3 of aspartate, and for C-3 of lactate. The natural abundance 13C present in extracts from control rats was also determined for each of these compounds and for N-acetylaspartate and taurine. The pattern of labeling within glutamate and GABA indicates that these amino acids were synthesized primarily within compartments in which glucose was metabolized to pyruvate, followed by decarboxylation to acetyl-CoA for entry into the tricarboxylic acid cycle. In contrast, the labeling pattern for glutamine and aspartate indicates that appreciable amounts of these amino acids were synthesized within a compartment in which glucose was metabolized to pyruvate, followed by carboxylation to oxaloacetate. These results are consistent with the concept that pyruvate carboxylase and glutamine synthetase are glia-specific enzymes, and that this partially accounts for the unusual metabolic compartmentation in CNS tissues. The results of our study also support the concept that there are several pools of glutamate, with different metabolic turnover rates. Our results also are consistent with the concept that glutamine and/or a tricarboxylic acid cycle intermediate is supplied by astrocytes to neurons for replenishing the neurotransmitter pool of GABA. However, a similar role for astrocytes in replenishing the transmitter pool of glutamate was not substantiated, possibly due to difficulties in quantitating satellite peaks arising from 13C-13C coupling.  相似文献   

19.
In isolated hepatocytes from normal fed rats, the subcellular distribution of malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH has been determined by a modified digitonin method. Incubation with various substrates (lactate, pyruvate, alanine, oleate, oleate plus lactate, ethanol and aspartate) markedly changed the total cellular amounts of metabolites, but their distribution between the cytosolic and mitochondrial compartments was kept fairly constant. In the presence of lactate, pyruvate or alanine, about 90% of cellular aspartate, malate and oxaloacetate, and 50% of citrate was located in the cytosol. The changes in acetyl-CoA in the cytosol were opposite to those in the mitochondrial space, the sum of both remaining nearly constant. The mitochondrial acetyl-CoA/CoASH ratio ranged from 0.3-0.9 and was positively correlated with the rate of ketone body formation. The mitochondrial/cytosolic (m/c) concentration gradients for malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH averaged from hepatocytes under different substrate conditions were determined to be 1.0, 8.8, 1.6, 2.2, 0.5, 0.7, 13 and 40, respectively. From the distribution of citrate, a pH difference of 0.3 across the inner mitochondrial membrane was calculated, yet lower values resulted from the m/c gradients of 2-oxoglutarate, glutamate and malate. The mass action ratios for citrate synthase and mitochondrial aspartate aminotransferase have been calculated from the metabolite concentrations measured in the mitochondrial pellet fraction. A comparison with the respective equilibrium constants indicates that in intact hepatocytes, neither enzyme maintains its reactants at equilibrium. On the assumption that mitochondrial malate dehydrogenase and 3-hydroxybutyrate dehydrogenase operate near equilibrium, the concentration of free oxaloacetate appears to be 0.3-2 micron, depending on the substrate used. Plotting the calculated free mitochondrial oxaloacetate concentration against the citrate concentration measured in the mitochondrial pellet yielded a hyperbolic saturation curve, from which an apparent Km of citrate synthase for oxaloacetate in the intact cells of 2 micron can be derived, which is comparable to the value determined with purified rat liver citrate synthase. The results are discussed with respect to the supply of substrates and effectors of anion carriers and of key enzymes of the tricarboxylic acid cycle and fatty acid biosynthesis.  相似文献   

20.
1. The equations derived by Heath (1968) were applied to data from experiments on rats in four metabolic states: fed, post-absorptive, starved and 2hr. after an eventually lethal injury. The data used were: (a) The fractions of label injected as C1-, C2- and C3-pyruvate (where the prefix indicates the position of labelling) that are incorporated into carbon dioxide and glucose in post-absorptive and injured rats (yields). Yields could be corrected to yields on label taken up by the liver. (b) The (C5-label in glutamate)/(total label in glutamate) ratio in the liver after C2-pyruvate in rats in all four states. (c) The distribution of label within glutamate after C2-pyruvate or C2-alanine in the livers of fed, post-absorptive and starved rats. (d) The distribution of label within glucose after C2-lactate or C2-pyruvate in starved rats. (e) The relative specific radioactivities of pyruvate, aspartate, glutamate and (in two states only) of glucose 6-phosphate after injection of [U-(14)C]glucose into rats in all four states. These data were previously published, except those after (e) and some after (b) above, which are given in this paper. 2. In addition the concentrations of pyruvate, citrate, glutamate and aspartate in the livers of post-absorptive and injured rats were found. Injury decreased glutamate and citrate concentrations and to a smaller extent aspartate and pyruvate concentrations. 3. Non-steady-state theory showed that most of the data could be used without serious error in steady-state theory. Steady-state theory correlated all but one observation (the relative yields of (14)CO(2) from C2- and C3-pyruvate) listed after (a)-(e) above within the experimental errors, and gave rough estimates of the rates of pyruvate carboxylation, conversion of pyruvate and fat into acetyl-CoA and utilization of glutamate. The main conclusions were: (a) symmetrization of label in oxaloacetate both in the mitochondrion and in the cytoplasm was far from complete, because oxaloacetate did not equilibrate with fumarate in either. From this and other findings it was deduced: (b) that malate or fumarate or both left the mitochondrion, and not oxaloacetate; (c) that there was a loss from the mitochondrion of a fraction of the malate or fumarate or both formed from succinate, and (d) the resulting deficiency of oxaloacetate for the perpetuation of the tricarboxylic acid cycle was made up from pyruvate in fed and post-absorptive rats, but (e) in the starved rat could only be made up by utilization of glutamate. (f) In the fed rat the tricarboxylic acid cycle ran mostly on pyruvate, but in the post-absorptive and starved rat mostly on fat. (g) In the injured rat the tricarboxylic acid cycle was slowed, label in oxaloacetate was completely symmetrized (cf. conclusion a), and the tricarboxylic acid cycle utilized glutamate. (h) The conclusions were not invalidated by isotopic exchange, i.e. flux of label without net flux of compound, nor by interaction with lipogenic processes. (i) In the kidneys interaction between the tricarboxylic acid cycle and gluconeogenesis was different from in the liver, and was much less. The effects on the theory were roughly assessed, and were small. 4. The experiments and optimum experimental conditions required to check the theory are listed, and several predictions, open to experimental confirmation, are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号