首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allantoin uptake in both growing and resting cultures of Saccharomyces cerevisiae occurs by a low-Km (ca. 15 micrometer) transport system that uses energy that is likely generated in the cytoplasm. This conclusion was based on the observation that transport did not occur in the absence of glucose or the presence of dinitrophenol, carbonyl cyanide-m-chloro-phenyl hydrazine, fluoride, or arsenate ions. Normal uptake was observed, however, in the presence of cyanide. The rate of accumulation was maximal at pH 5.2. In contrast to the urea transport system, allantoin uptake appeared to be unidirectional. Preloaded, radioactive allantoin was not lost from cells suspended in allantoin-free buffer and did not exchange with exogenously added, nonradioactive allantoin. Treatment of preloaded cells with nystatin, however, released the accumulated radioactivity. Allantoin accumulated within cells was isolated and shown to be chemically unaltered.  相似文献   

2.
Allantoin uptake in Saccharomyces cerevisiae is mediated by an energy-dependent, low-Km, active transport system. However, there is at present little information concerning its regulation. In view of this, we investigated the control of alloantoin transport and found that it was regulated quite differently from the other pathway components. Preincubation of appropriate mutant cultures with purified allantoate (commercial preparations contain 17% allantoin), urea, or oxalurate did not significantly increase allantoin uptake. Preincubation with allantoin, however, resulted in a 10- to 15-fold increase in the rate of allantoin accumulation. Two allantoin analogs were also found to elicit dramatic increases in allantoin uptake. Hydantoin and hydantoin acetic acid were able to induce allantoin transport to 63 and 95% of the levels observed with allantoin. Neither of these compounds was able to serve as a sole nitrogen source for S. cerevisiae, and they may be non-metabolizable inducers of the allantoin permease. The rna1 gene product appeared to be required for allantoin permease induction, suggesting that control was exerted at the level of gene expression. In addition, we have shown that allantoin uptake is not unidirectional; efflux merely occurs at a very low rate. Allantoin uptake is also transinhibited by addition of certain amino acids to the culture medium, and several models concerning the operation of such inhibition were discussed.  相似文献   

3.
Accumulation of intracellular allantoin and allantoate is mediated by two distinct active transport systems in Saccharomyces cerevisiae. Allantoin transport (DAL4 gene) is inducible, while allantoate uptake is constitutive (it occurs at full levels in the absence of any allantoate-related compounds from the culture medium). Both systems appear to be sensitive to nitrogen catabolite repression, feedback inhibition, and trans-inhibition. Mutants (dal5) that lack allantoate transport have been isolated. These strains also exhibit a 60% loss of allantoin transport capability. Conversely, dal4 mutants previously described are unable to transport allantoin and exhibit a 50% loss of allantoate transport. We interpret the pleiotropic behavior of the dal4 and dal5 mutations as deriving from a functional interaction between elements of the two transport systems.  相似文献   

4.
Abstract Although Bacillus fastidiosus assimilates ammonium formed internally during growth on urate, allantoin or allantoate via NADP-dependent glutamate dehydrogenase (NADP-GDH), growth on exogenous ammonium as nitrogen source has not been observed. Growth on ammonium, urea and ureidoglycolate, intermediates of the urate degradative pathway, was found to occur if the mineral growth medium containing glycerol as a carbon source was supplemented with both allantoin (0.5 mM) and brain heart infusion (BHI, 0.1%, w/v) or yeast extract. Neither allantoin nor BHI supported growth alone or in combination unless ammonium was present. NADP-GDH activity appeared to be regulated only by the extracellular concentration of allantoin or allantoate. Enzyme activity was not influenced by other nitrogen sources or the intracellular ammonium concentration.  相似文献   

5.
Two spontaneous Escherichia coli mutant strains which are resistant to an oxidative phosphorylation uncoupler, carbonyl cyanide-m-chlorophenyl hydrazone, were isolated. Strain CM22 (ccr-2) was resistant to another uncoupler, pentachlorophenol, and to the inhibitors of proton-translocating ATPase, namely tributyltin and sodium azide. Carbonyl cyanide-m-chlorophenyl hydrazone or pentachlorophenol administered to cell suspensions of strain CM22 did not cause a pH change induced by H+ influx, and a similar result was obtained with everted particles. The respiratory rate of strain CM22 with succinate was twice that of wild-type strain KH434. When carbonyl cyanide-m-chlorophenyl hydrazone was administered, a stimulation of O2 uptake was observed in wild-type strain KH434 but not in the mutant strain CM22. Strain CM22 did not grow on succinate at 42 degrees C. Isolation of a true revertant at a frequency of 10(-8) demonstrated that the pleiotropic phenotype was induced by a single mutation. P1 transduction indicated that the mutant allele, ccr-2, was cotransduced with the ilv genes at a frequency of about 55%.  相似文献   

6.
A new enzymatic assay for specifically measuring allantoin concentration in serum has been developed. The currently used methods for allantoin analysis are time consuming and nonspecific or depend on the use of expensive equipment. In our method, allantoin is converted to allantoate by the action of allantoinase (EC 3.5.2.5). The allantoate produced is hydrolyzed to ureidoglycine and ammonia by the action of allantoate amidohydrolase (EC 3.5.3.9). Nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (EC 1.4.1.4) subsequently acts on the ammonia produced, resulting in a change in absorbance at 340nm due to the consumption of reduced nicotinamide adenine dinucleotide phosphate. The amount of allantoin present is related to the change in the absorbance. The standard curve is linear up to at least 1mM allantoin. The procedure is simple, rapid, and accurate. The method has been used to measure serum allantoin levels after oral administration of purine nucleotides to experimental animals, including rats that have uricase catalyzing the conversion of urate to allantoin.  相似文献   

7.
Nickel transport in Methanobacterium bryantii.   总被引:10,自引:4,他引:6       下载免费PDF全文
Methanobacterium bryantii, grown autotrophically on H2-CO2, transported nickel against a concentration gradient by a high-affinity system (Km = 3.1 microM). The system had a pH optimum of 4.9 and a temperature optimum of 49 degrees C with an energy of activation of 7.8 kcal/mol (ca. 32.6 kJ/mol). A headspace of H2-CO2 (4:1, vol/vol) was required for maximum rate of transport. The system was highly specific for nickel and was unaffected by high levels of all monovalent and divalent ions tested (including Mg2+) with the sole exception of Co2+. Kinetic experiments indicated that accumulated nickel became increasingly incorporated into cofactor F430 and protein. Nickel transport was inhibited by nigericin, monensin, and gramicidin but not by carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone, carbonyl cyanide-m-chlorophenyl hydrazone, N,N'-dicyclohexylcarbodiimide, valinomycin plus potassium, or acetylene. The ineffectiveness of carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone, carbonyl cyanide-m-chlorophenyl hydrazone, and N,N'-dicyclohexylcarbodiimide may be related to difficulties in the penetration of these compounds through the outer cell barriers. Nickel uptake was greatly stimulated by an artificially imposed pH gradient (inside alkaline). The data suggest that nickel transport is not dependent on the membrane potential or on intracellular ATP, but is coupled to proton movement.  相似文献   

8.
The ability of two soybean (Glycine max L. [Merrill]) cultivars, 'Williams 82' and 'Maple Arrow', which were reported to use different ureide degradation pathways, to degrade the ureides allantoin and allantoate was investigated. Protein fractions and total leaf homogenates from the fourth trifoliate leaves of both cultivars were examined for the ability to evolve either (14)CO(2) or [(14)C]urea from (14)C-labelled ureides in the presence of various inhibitors. (14)CO(2) evolution from [2,7-(14)C]allantoate was catalysed by 25-50% saturated ammonium sulphate fractions of both cultivars. This activity was inhibited by acetohydroxamate (AHA), which has been used to inhibit plant ureases, but not by phenylphosphorodiamidate (PPD), a more specific urease inhibitor. Thus, in both cultivars, allantoate may be metabolized by allantoate amidohydrolase. This activity was sensitive to EDTA, consistent with previous reports demonstrating that allantoate amidohydrolase requires manganese for full activity. Total leaf homogenates of both cultivars evolved both (14)CO(2) and [(14)C]urea from [2,7-(14)C] (ureido carbon labelled) allantoin, not previously reported in either 'Williams 82' or in 'Maple Arrow'. In situ leaf degradation of (14)C-labelled allantoin confirmed that both urea and CO(2)/NH(3) are direct products of ureide degradation. Growth of plants in the presence of PPD under fixing and non-fixing conditions caused urea accumulation in both cultivars, but did not have a significant impact on total seed nitrogen. Urea levels were higher in N-fixing plants of both cultivars. Contrary to previous reports, no significant biochemical difference was found in the ability of these two cultivars to degrade ureides under the conditions used.  相似文献   

9.
Transport of AMP by Rickettsia prowazekii.   总被引:7,自引:6,他引:1       下载免费PDF全文
Rickettsia prowazekii possesses an exchange transport system for AMP. Chromatographic analysis of the rickettsiae demonstrated that transported AMP appeared intracellularly as AMP, ADP, and ATP, and no hydrolytic products appeared in either the intracellular or extracellular compartments. The phosphorylation of AMP to ADP and ATP was prevented by pretreatment of the cells with 1 mM N-ethylmaleimide without inhibiting the transport of AMP. Although no efflux was demonstrable in the absence of nucleotide in the medium, the intracellular adenine nucleotide pool could be exchanged with external unlabeled adenine nucleotides. Both ADP and ATP were as effective as AMP at inhibiting the uptake of [3H]AMP. Although this transport system was inhibited by low temperature (0 degrees C) and partially inhibited by the protonophore carbonyl cyanide-m-chlorophenyl hydrazone (1 mM), it was relatively insensitive to KCN (1 mM). The uptake of AMP at 34 degrees C had an apparent Kt for influx of 0.4 mM and a Vmax of 354 pmol min-1 per mg. At 0 degrees C there was a very rapid and unsaturable association of AMP with these organisms. Correction of the uptake data at 34 degrees C for the 0 degrees C component lowered the apparent Kt to 0.15 mM. Both magnesium and phosphate ions are required for optimal transport activity. Chemical measurements of the total intracellular nucleotide pools demonstrated that this system was not a net adenine nucleotide transport system, but that uptake of AMP was the result of an exchange with internal adenine nucleotides.  相似文献   

10.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

11.
The effect of thiourea on ureide metabolism in Neurospora crassa   总被引:1,自引:0,他引:1  
The wild-type strain of Neurospora crassa Em 5297a can utilize allantoin as a sole nitrogen source. The pathway of allantoin utilization is via its conversion into allantoic acid and urea, followed by the breakdown of urea to ammonia. This is shown by the inability of the urease-less mutant, N. crassa 1229, to grow on allantoin as a sole nitrogen source and by the formation of allantoate and urea by pre-formed mycelia of this mutant. In the wild strain (Em 5297a) thiourea is tenfold more toxic on an allantoin medium than on an inorganic nitrogen medium; allantoin as well as urea counteract thiourea toxicity in the allantoin nitrogen medium. This selective toxicity of thiourea for the mould utilizing allantoin nitrogen does not, however, result in an impairment of allantoin uptake, allantoinase activity or the formation of urea from allantoin. The only process affected by thiourea is the synthesis of urease; urea antagonizes this effect of thiourea in N. crassa.  相似文献   

12.
Manganese was accumulated by cells of Escherichia coli by means of an active transport system quite independent of the magnesium transport system. When the radioisotope (54)Mn was used, manganese transport showed saturation kinetics with a K(m) of 2 x 10(-7)m and a V(max) of 1 to 4 nmoles/min per 10(12) cells at 25 C. The manganese transport system is highly specific; magnesium and calcium did not stimulate, inhibit, or compete with manganese for cellular uptake. Cobalt and iron specifically interfered with (54)Mn uptake, but only when added at concentrations 100 times higher than the K(m) for manganese. Active transport of manganese is temperature- and energy-dependent: uptake of (54)Mn was inhibited by cyanide, dinitrophenol, and m-chlorophenyl carbonylcyanide hydrazone (CCCP). Furthermore, the turnover or exit of manganese from intact cells was inhibited by energy poisons such as dinitrophenol and CCCP.  相似文献   

13.
Allantoin catabolism studies have been extended to intact leaf tissue of soybean (Glycine max L. Merr.). Phenyl phosphordiamidate, one of the most potent urease inhibitors known, does not inhibit 14CO2 release from [2,7-14C]allantoin (urea labeled), but inhibits urea dependent CO2 release ≥99.9% under similar conditions. Furthermore, 14CO2 and [14C] allantoate are the only detectable products of [2,7-14C]allantoin catabolism. Neither urea nor any other product were detected by analysis on HPLC organic acid or organic base columns although urea and all commercially available metabolites that have been implicated in allantoin and glyoxylate metabolism can be resolved by a combination of these two columns. In contrast, when allantoin was labeled in the two central, nonureido carbons ([4,5-14C]allantoin), its catabolism to [14C]allantoate, 14CO2, [14C]glyoxylate, [14C]glycine, and [14C]serine in leaf discs could be detected. These data are fully consistent with the metabolism of allantoate by two amidohydrolase reactions (neither of which is urease) that occur at similar rates to release glyoxylate, which in turn is metabolized via the photorespiratory pathway. This is the first evidence that allantoate is metabolized without urease action to NH4+ and CO2 and that carbons 4 and 5 enter the photorespiratory pathway.  相似文献   

14.
Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO(2), and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; AtAAH) and from soybean (Glycine max; GmAAH) were cloned, expressed in planta as StrepII-tagged variants, and highly purified from leaf extracts. Both proteins form homodimers and release 2 mol ammonium/mol allantoate. Therefore, they can truly be classified as AAHs. The kinetic constants determined and the half-maximal activation by 2 to 3 microm manganese are consistent with allantoate being the in vivo substrate of manganese-loaded AAHs. The enzymes were strongly inhibited by micromolar concentrations of fluoride as well as by borate, and by millimolar concentrations of L-asparagine and L-aspartate but not D-asparagine. L-Asparagine likely functions as competitive inhibitor. An Ataah T-DNA mutant, unable to grow on allantoin as sole nitrogen source, is rescued by the expression of StrepII-tagged variants of AtAAH and GmAAH, demonstrating that both proteins are functional in vivo. Similarly, an allantoinase (aln) mutant is rescued by a tagged AtAln variant. Fluorescent fusion proteins of allantoinase and both AAHs localize to the endoplasmic reticulum after transient expression and in transgenic plants. These findings demonstrate that after the generation of allantoin in the peroxisome, plant purine degradation continues in the endoplasmic reticulum.  相似文献   

15.
Current conventional measurement of allantoin levels in human serum uses an HPLC method. However, performing this assay is time-consuming and sample-intensive, and it requires expensive equipment. We have developed a novel enzyme cycling method for measuring allantoin concentrations in human serum. In the first step, serum allantoin is converted to allantoate by the action of allantoinase (EC 3.5.2.5), and endogenous ammonia is simultaneously removed by the action of glutamine synthetase II (EC 6.3.1.2). In the second step, l-methionine sulfoximine is used to inhibit glutamine synthetase II, and ammonia is liberated from allantoate by the activity of allantoate amidohydrolase (EC 3.5.3.9). In the final step, the ammonia is then converted to NAD by NAD synthetase (EC 6.3.1.5). Subsequent action of glucose dehydrogenase (EC 1.1.1.47) and diaphorase (EC 1.6.99.2) in the presence of glucose and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) acts to cycle the formed NAD between its oxidized and reduced forms, resulting in the production of WST-1 formazan, which is monitored at 450 nm. The assay standard curve is linear from 0 to 70 μM allantoin. The level of allantoin in healthy subjects was measured to be 8.2 ± 3.1 μM (n = 30).  相似文献   

16.
17.
Raso MJ  Muñoz A  Pineda M  Piedras P 《Planta》2007,226(5):1333-1342
In tropical legumes like French bean (Phaseolus vulgaris) or soybean (Glycine max), most of the atmospheric nitrogen fixed in nodules is used for synthesis of the ureides allantoin and allantoic acid, the major long distance transport forms of organic nitrogen in these species. The purpose of this investigation was to characterise the allantoate degradation step in Phaseolus vulgaris. The degradation of allantoin, allantoate and ureidoglycolate was determined “in vivo” using small pieces of chopped seedlings. With allantoate and ureidoglycolate as substrates, the determination of the reaction products required the addition of phenylhydrazine to the assay mixture. The protein associated with the allantoate degradation has been partially purified 22-fold by ultracentrifugation and batch separation with DEAE-Sephacel. This enzyme was specific for allantoate and could not use ureidoglycolate as substrate. The activity was completely dependent on phenylhydrazine, which acts as an activator at low concentrations and decreases the affinity of the enzyme for the substrate at higher concentrations. The optimal pH for the activity of the purified protein was 7.0 and the optimal temperature was 37°C. The activity was completely inhibited by EDTA and only manganese partially restored the activity. The level of activity was lower in extracts obtained from leaves and fruits of French bean grown with nitrate than in plants actively fixing nitrogen and, therefore, relying on ureides as nitrogen supply. This is the first time that an allantoate-degrading activity has been partially purified and characterised from a plant extract. The allosteric regulation of the enzyme suggests a critical role in the regulation of ureide degradation.  相似文献   

18.
Warm season N2-fixing legumes move fixed N from the nodules to the aerial portions of the plant primarily in the form of ureides, allantoin and allantoate, oxidation products of purines synthesized de novo in the nodule. Ureides are also products of purine turnover in senescing tissues, such as seedling cotyledons. A combination of biochemical and molecular approaches in both crop and model species has shed new light on the metabolic pathways involved in both the synthesis and degradation of allantoin. Improved understanding of ureide biochemistry includes two 'additional' enzymatic steps in the conversion of uric acid to allantoin in the nodule and the mechanism of allantoin and allantoate breakdown in leaf tissue. Ureide accumulation and metabolism in leaves have also been implicated in the feedback inhibition of N2-fixation under water limitation. Sensitivity to water deficit differs among soybean cultivars. Manganese supplementation has been shown to modify relative susceptibility or tolerance to this process in a cultivar-dependent manner. A discussion of the potential roles for ureides and manganese in the feedback inhibition of N2-fixation under water limitation is presented. The existing data are examined in relation to potential changes in both aerial carbon and nitrogen supply under water deficit.  相似文献   

19.
Allantoinase (allantoin amidohydrolase, EC 3.5.2.5.) and allanoicase (allantoate amidinohydrolase, EC 3.5.3.4) of Pseudomonas aeruginosa are inducible enzymes, whose syntheses are enhanced by the presence of allantoin, allantoate, ureidoglycolate, N-carbamoyl-L-asparagine, N-carbamoyl-L-aspartate, hydantoate, and diureidomethane. For each compound a specific ratio between the activities of allantoinase and allantoicase was obtained. The synthesis of these enzymes is not coordinately controlled. N-Carbamoyl-L-aspartate, hydantoate, and diureidomethane are gratuitous inducers.  相似文献   

20.
Galactose transport systems in Streptococcus lactis   总被引:12,自引:8,他引:4       下载免费PDF全文
Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号