首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial protein import is thought to involve the sequential interaction of preproteins with binding sites on cis and trans sides of the membranes. For translocation across the outer membrane, preproteins first interact with the cytosolic domains of import receptors (cis) and then are translocated through a general import pore, in a process proposed to involve binding to a trans site on the intermembrane space (IMS) side. Controversial results have been reported for the role of the IMS domain of the essential outer membrane protein Tom22 in formation of the trans site. We show with different mutant mitochondria that a lack of the IMS domain only moderately reduces the direct import of preproteins with N-terminal targeting sequences. The dependence of import on the IMS domain of Tom22 is significantly enhanced by removing the cytosolic domains of import receptors or by performing import in two steps, i.e., accumulation of a preprotein at the outer membrane in the absence of a membrane potential (delta psi) and subsequent import after reestablishment of a delta psi. After the removal of cytosolic receptor domains, two-step import of a cleavable preprotein strictly requires the IMS domain. In contrast, preproteins with internal targeting information do not depend on the IMS domain of Tom22. We conclude that the negatively charged IMS domain of Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences, in agreement with the acid chain hypothesis of mitochondrial protein import.  相似文献   

2.
Preproteins destined for mitochondria either are synthesized with amino-terminal signal sequences, termed presequences, or possess internal targeting information within the protein. The preprotein translocase of the outer mitochondrial membrane (designated Tom) contains specific import receptors. The cytosolic domains of three import receptors, Tom20, Tom22, and Tom70, have been shown to interact with preproteins. Little is known about the internal targeting information in preproteins and the distribution of binding sequences for the three import receptors. We have studied the binding of the purified cytosolic domains of Tom20, Tom22, and Tom70 to cellulose-bound peptide scans derived from a presequence-carrying cleavable preprotein, cytochrome c oxidase subunit IV, and a non-cleavable preprotein with internal targeting information, the phosphate carrier. All three receptor domains are able to bind efficiently to linear 13-mer peptides, yet with different specificity. Tom20 preferentially binds to presequence segments of subunit IV. Tom22 binds to segments corresponding to the carboxyl-terminal part of the presequence and the amino-terminal part of the mature protein. Tom70 does not bind efficiently to any region of subunit IV. In contrast, Tom70 and Tom20 bind to multiple segments within the phosphate carrier, yet the amino-terminal region is excluded. Both charged and uncharged peptides derived from the phosphate carrier show specific binding properties for Tom70 and Tom20, indicating that charge is not a critical determinant of internal targeting sequences. This feature contrasts with the crucial role of positively charged amino acids in presequences. Our results demonstrate that linear peptide segments of preproteins can serve as binding sites for all three receptors with differential specificity and imply different mechanisms for translocation of cleavable and non-cleavable preproteins.  相似文献   

3.
The ADP/ATP carrier (AAC) is a major representative of mitochondrial preproteins lacking an N-terminal presequence. AAC contains targeting information in each of its three modules, which has led to a search for the dominant targeting region. An alternative, not yet tested model would be that several distinct targeting signals function simultaneously in import of the preprotein. We report that the three AAC modules cooperate in binding to the receptor Tom70 such that three Tom70 dimers are recruited to one preprotein. The modules are transferred to the import pore in a stepwise manner and cooperate again in the accumulation of AAC in the general import pore complex. AAC can cross the outer membrane with an internal segment first, i.e. in a loop formation. Each module of AAC is required for dimerization in the inner membrane. We propose a new concept for import of the hydrophobic carrier proteins into mitochondria where multiple signals cooperate in receptor recruitment, outer membrane translocation via loop formation and assembly in the inner membrane.  相似文献   

4.
Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity   总被引:2,自引:0,他引:2  
Mitochondrial preproteins are synthesized in the cytosol with N-terminal signal sequences (presequences) or internal targeting signals. Generally, preproteins with presequences are initially recognized by Tom20 (translocase of the outer membrane) and, subsequently, by Tom22, whereas hydrophobic preproteins with internal targeting signals are first recognized by Tom70. Recent studies suggest that Tom70 associates with molecular chaperones, thereby maintaining their substrate preproteins in an import-competent state. However, such a function has not been reported for other Tom component(s). Here, we investigated a role for Tom20 in preventing substrate preproteins from aggregating. In vitro binding assays showed that Tom20 binds to guanidinium chloride unfolded substrate proteins regardless of the presence or absence of presequences. This suggests that Tom20 functions as a receptor not only for presequences but also for mature portions exposed in unfolded preproteins. Aggregation suppression assays on citrate synthase showed that the cytosolic domain of Tom20 has a chaperone-like activity to prevent this protein from aggregating. This activity was inhibited by a presequence peptide, suggesting that the binding site of Tom20 for presequence is identical or close to the active site for the chaperone-like activity. The cytosolic domain of Tom22 also showed a similar activity for citrate synthase, whereas Tom70 did not. These results suggest that the cytosolic domains of Tom20 and Tom22 function to maintain their substrate preproteins unfolded and prevent them from aggregating on the mitochondrial surface.  相似文献   

5.
Young JC  Hoogenraad NJ  Hartl FU 《Cell》2003,112(1):41-50
The role of cytosolic factors in protein targeting to mitochondria is poorly understood. Here, we show that in mammals, the cytosolic chaperones Hsp90 and Hsp70 dock onto a specialized TPR domain in the import receptor Tom70 at the outer mitochondrial membrane. This interaction serves to deliver a set of preproteins to the receptor for subsequent membrane translocation dependent on the Hsp90 ATPase. Disruption of the chaperone/Tom70 recognition inhibits the import of these preproteins into mitochondria. In yeast, Hsp70 rather than Hsp90 is used in import, and Hsp70 docking is required for the formation of a productive preprotein/Tom70 complex. We outline a novel mechanism in which chaperones are recruited for a specific targeting event by a membrane-bound receptor.  相似文献   

6.
Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.  相似文献   

7.
Most mitochondrial membrane proteins are synthesized in the cytosol and must be delivered to the organelle in an unfolded, import competent form. In mammalian cells, the cytosolic chaperones Hsp90 and Hsp70 are part of a large cytosolic complex that deliver the membrane protein to the mitochondrion by docking with the import receptor Tom70. These two abundant chaperones have other functions in the cell suggesting that the specificity for the targeting of mitochondrial proteins requires the addition of specific factors within the targeting complex. We identify Tom34 as a cochaperone of Hsp70/Hsp90 in mitochondrial protein import. We show that Tom34 is an integral component with Hsp70 and Hsp90 in the large complex. We also demonstrate the role of Tom34 in the mitochondrial import process, as the addition of an excess of Tom34 prevents efficient mitochondrial translocation of precursor proteins that have requirements for Hsp70/Hsp90. Tom34 exhibits an affinity for mitochondrial preproteins of the Tom70 translocation pathway as demonstrated by binding assays using in vitro translated proteins as baits. In addition, we examined the specificity and the size of different complex cytosolic machines. Separation of different radiolabeled cell-free translated proteins on Native-PAGE showed the presence of a high molecular weight complex which binds hydrophobic proteins. Importantly we show that the formation of the chaperone cytosolic complex that mediates the targeting of proteins to the mitochondria contains Tom34 and assembles in the presence of a fully translated substrate protein.  相似文献   

8.
T Komiya  S Rospert  C Koehler  R Looser  G Schatz    K Mihara 《The EMBO journal》1998,17(14):3886-3898
Mitochondrial precursor proteins with basic targeting signals may be transported across the outer membrane by sequential binding to acidic receptor sites of increasing affinity. To test this 'acid chain' hypothesis, we assayed the interaction of mitochondrial precursors with three acidic receptor domains: the cytosolic domain of Tom20 and the intermembrane space domain of Tom22 and Tim23. The apparent affinity and salt resistance of precursor binding increased in the order Tom20<Tom22 (internal)<Tim23. Precursor binding to the three acidic receptor domains and to the pure cytosolic domain of Tom70 was inhibited by excess targeting peptide, but not by an equally basic control peptide. In this membrane-free and defined system, a precursor pre-bound to the Tom70 or Tom20 domain was transferred efficiently to the Tim23 domain. Transfer was stimulated by the internal Tom22 domain and was much less efficient in the reverse direction. Precursors destined for the outer membrane bound only to Tom20, but not to the internal Tom22 or the Tim23 domain, and a precursor destined for the inner membrane bound only to the Tom20 and the internal Tom22 domain, but not to the Tim23 domain. These results suggest that specific and sequential binding of a targeting signal to strategically situated acidic receptors delivers a precursor across the outer membrane and contributes to intramitochondrial sorting of imported proteins.  相似文献   

9.
Precise targeting of mitochondrial precursor proteins to mitochondria requires receptor functions of Tom20, Tom22, and Tom70 on the mitochondrial surface. Tom20 is a major import receptor that recognizes preferentially mitochondrial presequences, and Tom70 is a specialized receptor that recognizes presequence-less inner membrane proteins. The cytosolic domain of Tom22 appears to function as a receptor in cooperation with Tom20, but how its substrate specificity differs from that of Tom20 remains unclear. To reveal possible differences in substrate specificities between Tom20 and Tom22, if any, we deleted the receptor domain of Tom20 or Tom22 in mitochondria in vitro by introducing cleavage sites for a tobacco etch virus protease between the receptor domains and transmembrane segments of Tom20 and Tom22. Then mitochondria without the receptor domain of Tom20 or Tom22 were analyzed for their abilities to import various mitochondrial precursor proteins targeted to different mitochondrial subcompartments in vitro. The effects of deletion of the receptor domains on the import of different mitochondrial proteins for different import pathways were quite similar between Tom20 and Tom22. Therefore Tom20 and Tom22 are apparently involved in the same step or sequential steps along the same pathway of targeting signal recognition in import.  相似文献   

10.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the translocase of the outer mitochondrial membrane (TOM) complex. We report the molecular identification of Tom6 and Tom7, two small subunits of the TOM core complex in the fungus Neurospora crassa. Cross-linking experiments showed that both proteins were found to be in direct contact with the major component of the pore, Tom40. In addition, Tom6 was observed to interact with Tom22 in a manner that depends on the presence of preproteins in transit. Precursors of both proteins are able to insert into the outer membrane in vitro and are assembled into authentic TOM complexes. The insertion pathway of these proteins shares a common binding site with the general import pathway as the assembly of both Tom6 and Tom7 was competed by a matrix-destined precursor protein. This assembly was dependent on the integrity of receptor components of the TOM machinery and is highly specific as in vitro-synthesized yeast Tom6 was not assembled into N. crassa TOM complex. The targeting and assembly information within the Tom6 sequence was found to be located in the transmembrane segment and a flanking segment toward the N-terminal, cytosolic side. A hybrid protein composed of the C-terminal domain of yeast Tom6 and the cytosolic domain of N. crassa Tom6 was targeted to the mitochondria but was not taken up into TOM complexes. Thus, both segments are required for assembly into the TOM complex. A model for the topogenesis of the small Tom subunits is discussed.  相似文献   

11.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. This complex consists of receptor components for the initial contact with preproteins at the mitochondrial surface and membrane-embedded proteins which promote transport and form the translocation pore. In order to understand the interplay between the translocating preprotein and the constituents of the TOM complex, we analyzed the dynamics of the TOM complex of Neurospora crassa and Saccharomyces cerevisiae mitochondria by following the structural alterations of the essential pore component Tom40 during the translocation of preproteins. Tom40 exists in a homo-oligomeric assembly and dynamically interacts with Tom6. The Tom40 assembly is influenced by a block of negatively charged amino acid residues in the cytosolic domain of Tom22, indicating a cross-talk between preprotein receptors and the translocation pore. Preprotein binding to specific sites on either side of the outer membrane (cis and trans sites) induces distinct structural alterations of Tom40. To a large extent, these changes are mediated by interaction with the mitochondrial targeting sequence. We propose that such targeting sequence-induced adaptations are a critical feature of translocases in order to facilitate the movement of preproteins across cellular membranes.  相似文献   

12.
A large majority of the 1000–1500 proteins in the mitochondria are encoded by the nuclear genome, and therefore, they are translated in the cytosol in the form and contain signals to enable the import of proteins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for preprotein translocation. It consists of a general import pore complex and two membrane import receptors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of binding of one monomer of Tom70 per dimer of C-Hsp90 with a KD of 360 ± 30 nM, and the stoichiometry and thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interaction with Hsp90 when compared with other TPR proteins investigated.  相似文献   

13.
The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase.  相似文献   

14.
BCS1, a component of the inner membrane of mitochondria, belongs to the group of proteins with internal, noncleavable import signals. Import and intramitochondrial sorting of BCS1 are encoded in the N-terminal 126 amino acid residues. Three sequence elements were identified in this region, namely, the transmembrane domain (amino acid residues 51 to 68), a presequence type helix (residues 69 to 83), and an import auxiliary region (residues 84 to 126). The transmembrane domain is not required for stable binding to the TOM complex. The Tom receptors (Tom70, Tom22 and Tom20), as determined by peptide scan analysis, interact with the presequence-like helix, yet the highest binding was to the third sequence element. We propose that the initial recognition of BCS1 precursor at the surface of the organelle mainly depends on the auxiliary region and does not require the transmembrane domain. This essential region represents a novel type of signal with targeting and sorting functions. It is recognized by all three known mitochondrial import receptors, demonstrating their capacity to decode various targeting signals. We suggest that the BCS1 precursor crosses the TOM complex as a loop structure and that once the precursor emerges from the TOM complex, all three structural elements are essential for the intramitochondrial sorting to the inner membrane.  相似文献   

15.
Mcl-1 functions at an apical step in many regulatory programs that control cell death. Although the mitochondrion is one major subcellular organelle where Mcl-1 functions, the molecular mechanism by which Mcl-1 is targeted to mitochondria remains unclear. Here, we demonstrate that Mcl-1 is loosely associated with the outer membrane of mitochondria. Furthermore, we demonstrate that Mcl-1 interacts with the mitochondrial import receptor Tom70, and such interaction requires an internal domain of Mcl-1 that contains an EELD motif. A Tom70 antibody that blocks Mcl-1-Tom70 interaction blocks mitochondrial import of Mcl-1 in vitro. Furthermore, Mcl-1 is significantly less targeted to mitochondria in Tom70 knockdown than in the control cells. Similar targeting preference is also observed for the DM mutant of Mcl-1 whose mutation at the EELD motif markedly attenuates its Tom70 binding activity. Together, our results indicate that the internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway.  相似文献   

16.
A multisubunit complex in the mitochondrial outer membrane, the TOM complex, mediates targeting and membrane translocation of nuclear-encoded preproteins. We have isolated the TOM holo complex, containing the preprotein receptor components Tom70 and Tom20, and the TOM core complex, which lacks these receptors. The interaction of recombinant mitochondrial preproteins with both types of soluble TOM complex was analyzed. Preproteins bound efficiently in a specific manner to the isolated complexes in the absence of chaperones and lipids in a bilayer structure. Using fluorescence correlation spectroscopy, a dissociation constant in the nanomolar range was determined. The affinity was lower when the preprotein was stabilized in its folded conformation. Following the initial binding, the presequence was transferred into the translocation pore in a step that required unfolding of the mature part of the preprotein. This translocation step was also mediated by protease-treated TOM holo complex, which contains almost exclusively Tom40. Thus, the TOM core complex, consisting of Tom40, Tom22, Tom6 and Tom7, is a molecular machine that can recognize and partially translocate mitochondrial precursor proteins.  相似文献   

17.
The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.  相似文献   

18.
Metaxin is an outer membrane protein of mammalian mitochondria which is suggested to be involved in protein import into the organelle. RNA blot analysis showed that distribution of metaxin mRNA in human tissues differs from that of mRNA for the translocase component Tom20. Effect of overexpression of human metaxin on mitochondrial preprotein import and processing in COS-7 cells was studied. Overexpression of metaxin resulted in impaired mitochondrial import of natural and chimeric preproteins and in their accumulation. We previously reported that overexpression of Tom20 in cultured cells causes inhibition of import of mitochondrial preprotein. Coexpression of metaxin with Tom20 had no further effect on the preprotein import. Overexpression of the cytosolic domain of metaxin also caused inhibition of preprotein import, although less strongly than the full-length metaxin. In blue native PAGE, Tom40, Tom22, and a portion of Tom20 migrated as a complex of approximately 400 kDa, and the other portion of Tom20 migrated in smaller forms of approximately 100 and approximately 40 kDa. On the other hand, metaxin migrated at a position of approximately 50 kDa. These results confirm earlier in vitro results that metaxin participates in preprotein import into mammalian mitochondria, and indicates that it does not associate with the Tom complex.  相似文献   

19.
Preprotein import into mitochondria is mediated by translocases located in the outer and inner membranes (Tom and Tim) and a matrix Hsp70-Tim44 driving system. By blue native electrophoresis, we identify an approximately 90K complex with assembled Tim23 and Tim17 as the core of the inner membrane import site for presequence-containing preproteins. Preproteins spanning the two membranes link virtually all Tim core complexes with one in four Tom complexes in a stable 600K supercomplex. Neither mtHsp70 nor Tim44 are present in stoichiometric amounts in the 600K complex. Preproteins in transit stabilize the Tim core complex, preventing an exchange of subunits. Our studies define a central role for the Tim core complexes in mitochondrial protein import; they are not passive diffusion channels, but can stably interact with preproteins and determine the number of translocation contact sites. We propose the hypothesis that mtHsp70 functions in protein import not only by direct interaction with preproteins, but also by exerting a regulatory effect on the Tim channel.  相似文献   

20.
Mitochondrial protein traffic requires precise recognition of the mitochondrial targeting signals by the import receptors on the mitochondrial surface including a general import receptor Tom20 and a receptor for presequence-less proteins, Tom70. Here we took a proteome-wide approach of mitochondrial protein import in vitro to find a set of presequence-containing precursor proteins for recognition by Tom70. The presequences of the Tom70-dependent precursor proteins were recognized by Tom20, whereas their mature parts exhibited Tom70-dependent import when attached to the presequence of Tom70-independent precursor proteins. The mature parts of the Tom70-dependent precursor proteins have the propensity to aggregate, and the presence of the receptor domain of Tom70 prevents their aggregate formation. Therefore Tom70 plays the role of a docking site for not only cytosolic chaperones but also aggregate-prone substrates to maintain their solubility for efficient transfer to downstream components of the mitochondrial import machineries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号