首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In mammals, the pituitary POU homeodomain protein, Pit-1, binds to proximal and distal 5'-flanking sequences of the PRL gene that dictate tissue-specific expression. These DNA sequences are highly conserved among mammals but are dramatically different from PRL 5' sequences in the teleost species, Oncorhynchus tschawytscha (chinook salmon). To analyze the molecular basis for pituitary-specific gene expression in a distantly related vertebrate, we transfected CAT reporter gene constructs containing 2.4 kilobases (kb) 5'-flanking sequence from the salmon PRL (sPRL) gene into various cell types. Expression of the sPRL gene was restricted to pituitary cells, but in rat pituitary GH4 cells levels of expression were at least 90-fold lower than those obtained with a -3 kb rat PRL (rPRL) construct. Conversely, in primary teleost pituitary cells, -2.4 kb sPRL/CAT was expressed at levels about 10-fold higher than -3 kb rPRL/CAT. To determine whether species-specific transactivation by Pit-1 was sufficient to explain these species differences in PRL gene expression, we isolated a cDNA clone encoding the salmon Pit-1 POU domain and constructed a rat Pit-1 expression vector that contained salmon Pit-1 POU domain sequences substituted in frame. The chimeric Pit-1 encoded 14 amino acids unique to salmon. Coexpression of rat Pit-1 with salmon or rat PRL/CAT in transfected HeLa cells resulted in specific and strikingly comparable levels of promoter activation. Moreover, the specificity and efficacy of the chimeric salmon/rat Pit-1 was similar to wild type rat Pit-1 in activating salmon and rat PRL/CAT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
10.
11.
Growth hormone (GH) diminishes adipose tissue mass in vivo and prolactin (PRL) can also modulate adipocyte metabolism. Both GH and PRL are potent activators of STAT5 and exert a variety of effects on adipocyte gene expression. In this study, we have demonstrated that GH and PRL increase the mRNA of acyl CoA oxidase in 3T3-L1 adipocytes. We also identified seven putative STAT elements in the murine AOX promoter. We observed that GH modulates protein binding to the majority of these promoter elements. However, GH induced very potent binding to -1841 to -1825 of the murine AOX promoter. EMSA supershift analysis revealed that this site was specifically bound by STAT5A, but not by STAT1 or STAT3. Taken together, these data strongly suggest that GH directly induces the expression of AOX in adipocytes through STAT5A binding to the -1841 to -1825 site within the AOX promoter. Our observations are consistent with other studies that demonstrate that STAT5 activators modulate fatty acid oxidation.  相似文献   

12.
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides −496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides −308/−235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (−264/−259) and investigated whether HIF-1 is associated with insulin regulation of “endogenous” hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.  相似文献   

13.
14.
15.
16.
Studies were conducted to determine whether the trans-acting protein Pit-1/GHF-1 can bind to and activate promoter elements in both the GH and PRL genes that are necessary for cell-specific expression. Four pituitary cell lines that differentially express the endogenous GH and PRL genes were examined for their ability to activate GH and PRL promoter constructs containing sequences necessary for cell-specific expression (CSEs). Plasmids containing one CSE, -96 PRL and -104 GH, were similarly expressed in each of the four cell lines. Of the plasmids containing two CSEs, -173 PRL was always activated to a greater extent than -145 GH, with this relative activation being stronger in GC and GH1 cells than in 235-1 and GH4C1 cells. Protein-DNA binding assays were used to show that the GH and PRL CSEs specifically bound two highly abundant nuclear proteins (31 and 33 kDa). The two proteins were present at similar levels in all four pituitary cell lines and were recognized by a Pit-1/GHF-1 antibody. In contrast, HeLa and Rat2 cells did not activate transfected GH or PRL plasmids and did not contain nuclear proteins that specifically bound to the GH and PRL CSEs. However, cotransfection of these cells with the expression vector RSV-Pit-1/GHF-1 resulted in the activation of -173 PRL and -145 GH (PRL greater than GH). HeLa cells transfected with RSV-Pit-1/GHF-1 also contained 31- and 33-kDa nuclear proteins that bound to the GH and PRL CSEs. These results show that Pit-1/GHF-1 is present at levels in pituitary cell lines that are sufficient to activate the minimal elements in both the GH and PRL promoters necessary for cell-specific expression of these genes.  相似文献   

17.
18.
19.
20.
The PRL gene is expressed at a high basal level in rat pituitary tumor GH3 cells, and this basal level enhancement of PRL gene expression is maintained through a Ca2+-calmodulin-dependent mechanism. We have now examined whether the enzyme, DNA topoisomerase II, which has been shown to be phosphorylated by a Ca2+-calmodulin-dependent protein kinase, plays a role in the Ca2+-calmodulin-dependent basal level enhancement of PRL gene expression. The topoisomerase II inhibitor, novobiocin, at concentrations in the range of 35-140 microM, effectively blocked the ability of Ca2+ to increase PRL mRNA levels. Examination of the effects of novobiocin on the levels of protein synthesis, glucose-regulated protein (GRP) 78 mRNA, histone 3 mRNA, and 18S ribosomal RNA indicated that the drug selectivity inhibited PRL gene expression. Two other topoisomerase II inhibitors, m-AMSA and VM26, also diminished the Ca2+-induced levels of PRL mRNA at concentrations (100-400 nM) that did not lower total mRNA levels. We then examined whether topoisomerase II interacted nonrandomly with DNA from the 5' transcribed and 5'-flanking region of the rat PRL gene by in vitro mapping of topoisomerase II DNA cleavage sites. In initial assays with a 10.5 kilobase (kb) PRL genomic DNA fragment containing 3.5 kb of 5'-transcribed DNA and 7 kb of 5'-flanking DNA, we detected 4 major cleavage sites in the following regions: site 1, +1500 to +1600; site 2, +1 to -100; site 3, -1200 to -1300; and site 4, -2900 to -3000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号