首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

2.
Valérie Desquiret 《BBA》2006,1757(1):21-30
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 μM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

3.
We compared the proliferation of neonatal and adult airway smooth muscle cells (ASMC) with no/moderate lung disease, in glucose- (energy production by glycolysis) or glucose-free medium (ATP production from mitochondrial oxidative phosphorylations only), in response to 10% fetal calf serum (FCS) and PDGF-AA. In the presence of glucose, cell counts were significantly greater in neonatal vs. adult ASMC. Similarly, neonatal ASMC DNA synthesis in 10% FCS and PDGF-AA, and [Ca2+]i responses in the presence of histamine were significantly enhanced vs. adults. In glucose-free medium, cell proliferation was preserved in neonatal cells, unlike in adult cells, with concomitant increased porin (an indicator of mitochondrial activity) protein expression. Compared to adults, stimulated neonatal human ASMC are in a rapid and robust proliferative phase and have the capacity to respond disproportionately under abnormal environmental conditions, through increased mitochondrial biogenesis and altered calcium homeostasis.  相似文献   

4.
HepG2, hepatocellular carcinoma cells, are used in drug toxicity studies and have also been explored for bioartificial livers. For these applications, the cells are under variable levels of nutrients and hormones, the effects of which on metabolism are poorly understood. In this study, HepG2‐C3A cells were cultured under varying levels of glucose (high, low, and glucose‐free) and insulin (without and with physiological levels of insulin) for 5 days. Cell growth was found to be comparable between high and low glucose media and lowest for glucose‐free medium. Several features of central metabolism were affected profoundly by the medium glucose levels. Glucose consumption was greater for low glucose medium compared to high glucose medium, consistent with known glucose feedback regulation mechanisms. Urea productivity was highest in glucose‐free medium. Further, it was seen that lactate acted as an alternative carbon source in the absence of glucose, whereas it acted as a sink for the high and low glucose media. Using a metabolic network flexibility analysis (MNFA) framework with stoichiometric and thermodynamic constraints, intracellular fluxes under varying levels of glucose and insulin were evaluated. The analysis indicates that urea production in HepG2‐C3A cells arises via the arginase II pathway rather than from ammonia detoxification. Further, involvement of the putrescine metabolism with glutamine metabolism caused higher urea production in glucose‐free medium consistent with higher glutamine uptake. MNFA indicated that in high and low glucose media, glycolysis, glutaminolysis, and oxidative phosphorylation were the main sources of energy (NADH, NADPH, and ATP). In the glucose‐free medium, due to very low glycolytic flux, higher malate to pyruvate glutaminolytic flux and TCA cycle contributed more significantly to energy metabolism. The presence of insulin lowered glycerol uptake and corresponding fluxes involved in lipid metabolism for all glucose levels but otherwise exerted negligible effect on metabolism. HepG2‐C3A cells thus show distinct differences from primary hepatocytes in terms of energy metabolism and urea production. This knowledge can be used to design media supplements and metabolically engineer cells to restore necessary hepatic functions to HepG2‐C3A cells for a range of applications. Biotechnol. Bioeng. 2010;107: 347–356. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Raza H  John A 《PloS one》2012,7(4):e36325
We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.  相似文献   

6.
It has been shown previously that human rho degrees cells, deprived of mitochondrial DNA and consequently of functional oxidative phosphorylation, maintain a mitochondrial membrane potential, which is necessary for their growth. The goal of our study was to determine the precise origin of this membrane potential in three rho degrees cell lines originating from the human HepG2, 143B, and HeLa S3 cell lines. Residual cyanide-sensitive oxygen consumption suggests the persistence of residual mitochondrial respiratory chain activity, about 8% of that of the corresponding parental cells. The fluorescence emitted by the three rho degrees cell lines in the presence of a mitochondrial specific fluorochrome was partially reduced by a protonophore, suggesting the existence of a proton gradient. The mitochondrial membrane potential is maintained both by a residual proton gradient (up to 45 to 50% of the potential) and by other ion movements such as the glycolytic ATP(4-) to mitochondrial ADP(3-) exchange. The ANT2 gene, encoding isoform 2 of the adenine nucleotide translocator, is overexpressed in rho degrees HepG2 and 143B cells strongly dependent on glycolytic ATP synthesis, as compared to the corresponding parental cells, which present a more oxidative metabolism. In rho degrees HeLa S3 cells, originating from the HeLa S3 cell line, which already displays a glycolytic energy status, ANT2 gene expression was not higher as in parental cells. Mitochondrial oxygen consumption and ANT2 gene overexpression vary in opposite ways and this suggests that these two parameters have complementary roles in the maintenance of the mitochondrial membrane potential in rho degrees cells.  相似文献   

7.
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.  相似文献   

8.
3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.  相似文献   

9.
The UCP1 is an uncoupling protein located in the inner mitochondrial membrane of brown adipocytes, which has a well-documented role in diet-induced thermogenesis. The current study assessed whether UCP1 transfected liver cells demand more fuel substrates in the oxidative phosphorylation processes. Therefore, the purpose of this experiment was to achieve an ectopic expression of UCP1 in HepG2 cells to significantly decrease the production of ATP. The UCP1 gene was transferred into the hepatic cells by using a calcium phosphate precipitation protocol. The efficiency of the transfection was tested, 48 hours later, by bioluminescence of luciferase previously transfected, while the expression of mRNA of UCP1 was demonstrated by RT-PCR. In addition, measuring the production of ATP by using a bioluminescence procedure assessed the functionality of this protein. Transfected liver cells with UCP1 showed a decrease of 23% in ATP production in comparison with control cells without expression of UCP1 (2.23 vs. 2.90 RLU/pg protein, p=0.015). In conclusion, the ectopic expression of UCP1 decreased the production of ATP, possibly uncoupling the oxidative phosphorylation, which could be a novel approach for understanding thermogenic processes and eventually for energy metabolism and body weight management.  相似文献   

10.
Leigh syndrome is a highly heterogeneous condition caused by pathological mutations in either nuclear or mitochondrial DNA regions encoding molecules involved in mitochondrial oxidative phosphorylation, in which many organs including the brain can be affected. Among these organs, a high incidence of poor bone health has been recognized in primary mitochondrial diseases including Leigh syndrome. However, the direct association between mitochondrial dysfunction and poor bone health has not been fully elucidated. Mitochondrial biosynthesis is a potential therapeutic target for this syndrome, as it can ameliorate the impairment of oxidative phosphorylation without altering these gene mutations. A recent study has shown the impaired osteogenesis in the dental pulp stem cells derived from the deciduous teeth of a child with Leigh syndrome, harboring the heteroplasmic mutation G13513A in the mitochondrial DNA region encoding the ND5 subunit of the respiratory chain complex I. The present study aimed to investigate whether mitochondrial biogenesis could be a therapeutic target for improving osteogenesis, using the same stem cells in a patient-specific cellular model. For this purpose, bezafibrate was used because it has been reported to induce mitochondrial biogenesis as well as to improve bone metabolism and osteoporosis. Bezafibrate clearly improved the differentiation of patient-derived stem cells into osteoblasts and the mineralization of differentiated osteoblasts. The mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α, ATP production, and mitochondrial Ca2+ levels were all significantly increased by bezafibrate in the patient-derived cells. In addition, the increased amount and morphological shift from the fragmentary to network shape associated with DRP1 downregulation were also observed in the bezafibrate-treated patient-derived cells. These results suggest that mitochondrial biogenesis may be a potential therapeutic target for improving osteogenesis in patients with Leigh syndrome, and bezafibrate may be one of the candidate treatment agents.  相似文献   

11.
12.

Background

Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls.

Methodology/Principal Findings

Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O2 consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged.

Conclusion

NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype.  相似文献   

13.
In early studies on energy metabolism of tumor cells, it was proposed that the enhanced glycolysis was induced by a decreased oxidative phosphorylation. Since then it has been indiscriminately applied to all types of tumor cells that the ATP supply is mainly or only provided by glycolysis, without an appropriate experimental evaluation. In this review, the different genetic and biochemical mechanisms by which tumor cells achieve an enhanced glycolytic flux are analyzed. Furthermore, the proposed mechanisms that arguably lead to a decreased oxidative phosphorylation in tumor cells are discussed. As the O(2) concentration in hypoxic regions of tumors seems not to be limiting for the functioning of oxidative phosphorylation, this pathway is re-evaluated regarding oxidizable substrate utilization and its contribution to ATP supply versus glycolysis. In the tumor cell lines where the oxidative metabolism prevails over the glycolytic metabolism for ATP supply, the flux control distribution of both pathways is described. The effect of glycolytic and mitochondrial drugs on tumor energy metabolism and cellular proliferation is described and discussed. Similarly, the energy metabolic changes associated with inherent and acquired resistance to radiotherapy and chemotherapy of tumor cells, and those determined by positron emission tomography, are revised. It is proposed that energy metabolism may be an alternative therapeutic target for both hypoxic (glycolytic) and oxidative tumors.  相似文献   

14.
It is well known that glucose is a major energy source in tumors and that mitochondria are specialized organelles required for energy metabolism. Previous studies have revealed that nitric oxide (NO) protects against glucose depletion-induced cytotoxicity in mouse liver cells and in rat hepatocytes, but the detailed mechanism is not well understood. Therefore, we investigated the involvement of mitochondria in the NO protective effect in human hepatoma HepG2 cells. In this study, we showed that glucose depletion resulted in a time-dependent decrease in intracellular NO and in the protein expression of NO synthases. This glucose depletion-induced decrease in NO was blocked by NO donors. Next, we showed that the cytoprotective effect of NO is via a cyclic guanosine 3',5'-monophosphate-dependent pathway. Additionally, SNP blocked a glucose depletion-induced decrease in mitochondrial mass, mitochondrial DNA copies, and ATP level in HepG2 cells. Moreover, glucose depletion decreased the expression of various mitochondrial proteins, including cytochrome c, complex I (NADH dehydrogenase), complex III (cytochrome c reductase), and heat shock protein 60; these glucose depletion-induced effects were blocked by SNP. Furthermore, we found that rotenone and antimycin A (mitochondria complex I and III inhibitors, respectively) blocked SNP cytoprotection against glucose depletion-induced cytotoxicity. Taken together, our results indicated that the mitochondria serve as an important cellular mediator of NO during protection against glucose deprivation-induced damage.  相似文献   

15.
16.
17.
18.
This study examines age‐dependent metabolic‐inflammatory axis in primary astrocytes isolated from brain cortices of 7‐, 13‐, and 18‐month‐old Sprague–Dawley male rats. Astrocytes showed an age‐dependent increase in mitochondrial oxidative metabolism respiring on glucose and/or pyruvate substrates; this increase in mitochondrial oxidative metabolism was accompanied by increases in COX3/18SrDNA values, thus suggesting an enhanced mitochondrial biogenesis. Enhanced mitochondrial respiration in astrocytes limits the substrate supply from astrocytes to neurons; this may be viewed as an adaptive mechanism to altered cellular inflammatory–redox environment with age. These metabolic changes were associated with an age‐dependent increase in hydrogen peroxide generation (largely ascribed to an enhanced expression of NOX2) and NFκB signaling in the cytosol as well as its translocation to the nucleus. Astrocytes also displayed augmented responses with age to inflammatory cytokines, IL‐1β, and TNFα. Activation of NFκB signaling resulted in increased expression of nitric oxide synthase 2 (inducible nitric oxide synthase), leading to elevated nitric oxide production. IL‐1β and TNFα treatment stimulated mitochondrial oxidative metabolism and mitochondrial biogenesis in astrocytes. It may be surmised that increased mitochondrial aerobic metabolism and inflammatory responses are interconnected and support the functionality switch of astrocytes, from neurotrophic to neurotoxic with age.  相似文献   

19.
Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy “fuels” would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: “two-compartment tumor metabolism.” Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with “Warburg-like” cancer metabolism, as DRAM is a DNA damage/repair target gene.  相似文献   

20.
杨光影  赵彤  田静涵  翁俊  曾小美 《菌物学报》2018,37(11):1424-1440
线粒体ATP合酶是线粒体氧化磷酸化的关键酶,其功能缺陷会导致能量代谢障碍相关的线粒体疾病。线粒体ATP合酶是由多个亚基组成的蛋白复合物,其生物合成和组装是个复杂的生物过程。酵母是研究线粒体ATP合酶结构、生物合成和组装机制的模式实验材料之一,且相关研究取得了很多进展。本文概述了国内外用酿酒酵母研究线粒体ATP合酶的结构、调控线粒体ATP合酶亚基生物合成和组装的辅助蛋白及合酶的模块化组装过程的研究进展,以期为线粒体ATP合酶的工作机制及相关线粒体疾病的研究提供理论借鉴和参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号