首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
妊娠期乳腺癌是一种特殊类型的乳腺癌。妊娠对乳腺癌的生物学行为可能的影响及诊疗措施对胎儿的影响,使得妊娠期乳腺癌的临床表现、诊断和治疗等有其特殊性。由于妊娠相关的乳腺的生理改变,妊娠期乳腺癌的诊断极具挑战性,导致诊断延误非常普遍。妊娠期乳腺癌患者的治疗策略需要多学科专家一起参与决定,在考虑胎儿安全性的同时尽量与非妊娠乳腺癌患者的标准治疗一致。妊娠期间都可以安全的行乳腺手术。妊娠第一孕期和第二孕期早期可以考虑放疗,但要注意检测胎儿暴露的放射剂量。研究证据越来越支持14孕周后可以安全的行化疗。曲妥单抗和他莫昔芬有潜在的胎儿毒性,不推荐用于妊娠期患者。  相似文献   

2.
溶质载体家族的新成员,有机溶质转运体(organic solute transporter alpha-beta,OSTα-OSTβ),是由OSTα和OSTβ构成的异源二聚体,通过易化扩散在胆汁酸跨上皮细胞基底膜转运中起重要作用,是胆汁酸被肠道吸收、完成肠肝循环所必需的转运体。OSTα和OSTβ需形成异二聚体来维持转运体的稳定性、向细胞膜转位并维持转运活性。OSTα和OSTβ的表达受以法尼醇X受体(farnesoid X receptor,FXR)为主的多种核受体的转录调节。OSTα-OSTβ可在胆汁淤积时减少胆汁酸的毒性作用,影响血浆胆汁酸和甘油三酯水平。本文将就OSTα-OSTβ转运体的组织分布、亚细胞定位、转运机制、底物特异性、结构域划分和转录调控等进行综述。  相似文献   

3.
目的建立一套动物模型检测方案,用于筛选和研究对人类和动物早期妊娠有影响的环境卤代芳烃类污染物。方法利用TCDD作为初始研究标准化合物,以NIH小鼠建立动物早期妊娠模型评估方案,包括剂量-反应评估(DRE)、着床前后毒性比较(PPP)、子宫蜕膜细胞反应(DCR)和胚胎转移速率(ETR)分析。结果DRE发现TCDD剂量依赖性地引起了第9天胚胎数量的显著减少。PPP比较发现100 ng/(kg.d)对胚胎着床前期影响显著大于着床后期;胚胎重量评估发现,TCDD在妊娠早期的不同时间给药均影响了胚胎的发育,造成发育迟缓,重量减轻。DCR检测发现TCDD处理显著抑制(P<0.01)假孕小鼠子宫蜕膜。ETR分析发现TCDD未影响胚胎在输卵管中的转移速度,但造成分裂卵发育迟缓,着床前分裂卵丢失(P<0.05)。对出生前胚胎成活率观察发现,TCDD可造成出生前胎儿死亡,胎儿成活率低于妊娠中期的胚胎成活率。结论TCDD对着床前胚胎的毒性明显大于着床后,并具有持续毒性的特点。其机理涉及抑制子宫蜕膜细胞反应、造成着床前分裂卵的丢失或发育的不同步。  相似文献   

4.
妊娠肝内胆汁淤积症(Intrahepatic cholestasis of pregnancy,ICP)是发生在妊娠中晚期,以皮肤瘙痒、黄疸、血清胆汁酸升高,伴轻度肝功能损害为特征的妊娠并发症,严重影响母儿健康。ICP的发病机制尚未完全阐明,但有研究表明在遗传易感性妇女中,性激素及其代谢产物导致胆汁酸代谢异常与本病的发生密切相关。现就目前国内外有关ICP发病机制的研究进展做一综述,一方面为探寻更深层次的机制提供理论基础,另一方面为临床治疗ICP提供思路和方法。  相似文献   

5.
刘佳  侯莉莉 《生物磁学》2011,(23):4539-4541
妊娠肝内胆汁淤积症(Intrahepatic cholestasis of pregnancy, ICP)是发生在妊娠中晚期,以皮肤瘙瘁、黄疸、血清胆汁酸升高,伴轻度肝功能损害为特征的妊娠并发症,严重影响母儿健康。ICP的发病机制尚未完全阐明,但有研究表明在遗传易感性妇女中,性激素及其代谢产物导致胆汁酸代谢异常与本病的发生密切相关。现就目前国内外有关ICP发病机制的研究进展做一综述,一方面为探寻更深层次的机制提供理论基础,另一方面为临床治疗ICP提供思路和方法。  相似文献   

6.
草鱼不同组织胆汁酸组成分析   总被引:1,自引:0,他引:1  
正胆汁酸是由胆固醇通过一系列酶促反应在肝细胞中合成的,根据侧链羟基数目的多少胆汁酸分为初级胆汁酸和次级胆汁酸。初级胆汁酸随食物到达肠道,在肠道微生物的作用下脱羟基形成次级胆汁酸~([1])。初级胆汁酸和次级胆汁酸都可与牛磺酸或者甘氨酸结合形成结合型胆汁酸。肝脏中合成的以及经由肠肝循环回到肝脏的胆汁酸都被储存在胆囊中。胆汁酸的主要生理功能是帮助脂溶性营养物质的消化吸收,高脂肪的摄入刺激胆汁酸  相似文献   

7.
胎盘是妊娠期保证胎儿正常生长发育的临时性器官,是胎儿与母体进行营养和气体交换的唯一渠道。胎盘发育异常不仅会造成胎儿发育障碍和多种妊娠疾病,还可影响母体乃至后代的远期健康。深入了解胎盘发育的生理特征及其调控机理,阐释胎盘发育障碍在妊娠相关疾病发生过程中的作用机制,进而探讨靶向胎盘的妊娠疾病的防治策略,对全面提高人类生殖健康水平、出生人口素质乃至终生的健康水平都具有深远的意义。首先简介胎盘发育过程中滋养层细胞分化及对母体子宫螺旋动脉的改建过程;分析胎盘发育不良与子痫前期等妊娠疾病的关系;进而阐述胎盘发育过程中,母体肝脏、肾脏、循环系统、免疫系统以及凝血系统的妊娠适应性调节;最后简单阐述胎盘发育不良对母婴远期健康的影响。对上述问题的整体认识会大力推进妊娠维持及母胎健康研究领域产生新的突破。  相似文献   

8.
病理妊娠包括胎儿生长受限、妊娠期高血压疾病、妊娠期糖尿病等,是严重威胁母婴健康的疾病。对病理妊娠机制的深入研究,有助于我们在临床上更好的诊治。妊娠期间胎盘分泌的糖皮质激素代谢酶11β-羟基类固醇脱氢酶(11β-HSD,11β-hydroxysteroid dehydrogenase)的异常表达被认为与病理妊娠有关。11β-HSD分为11β-HSD1和11β-HSD2两种亚型。胎盘11β-HSD2为避免胎儿暴露于过量的糖皮质激素水平提供了屏障作用,保证胎儿正常生长发育。胎盘11β-HSD2表达和活性降低与胎儿生长受限有关。胎盘11β-HSD2的活性在妊娠期高血压疾病患者中是降低的,妊娠期高血压疾病也可导致胎盘11β-HSD2活性的进一步降低。胎盘11β-HSD1表达增加与胰岛素抵抗有关,可能参与妊娠期糖尿病的发病。针对胎盘11β-HSD的活性调节将是病理妊娠治疗的重要措施之一。  相似文献   

9.
肠道菌群是胃肠道的多种共生细菌和其他微生物的统称,是一个复杂而动态的微生物生态系统,有数十万亿个微生物。胆汁酸是胆汁的主要成分,由肝脏中的胆固醇合成并释放到肠道中以帮助消化吸收膳食脂肪。肠道菌群在胆汁酸代谢中发挥着重要作用,它借助胆盐水解酶和类固醇脱氢酶等通过脱氢、脱羟基和脱硫等作用改变胆汁酸池的组成;随后通过影响胆汁酸受体(如法尼醇X受体)再反馈调节胆汁酸代谢。此外胆汁酸可通过破坏细菌细胞膜和损伤DNA等抑制细菌的生长而直接改变肠道菌群结构,也可通过其受体间接改变肠道菌群结构。越来越多的研究揭示了肝脏胆汁酸和肠道菌群在调节宿主健康和疾病中的相互作用。因此,了解肠道菌群和胆汁酸代谢之间的相互作用对维持宿主健康具有重要意义。本文就胆汁酸的基本代谢过程以及其与肠道菌群的相互作用作一综述。  相似文献   

10.
目的研究恒河猴正常子宫及妊娠后期胎儿的MRI表现。方法对3只未妊娠和3只妊娠135d的恒河猴分别进行磁共振成像(MRI)扫描,观察子宫及胎儿的影像学特点。结果未妊娠恒河猴的子宫T1WI冠状位呈椭圆形,子宫体各层呈中等信号,矢状位呈葫芦形。在T2WI上,冠状位显示宫体可见2~3层不同的信号带,在矢状位子宫体肌层的信号高于子宫颈,信号的移行区是体颈的交界处。妊娠恒河猴的子宫肌层变薄,胎盘及胎儿的脑、脊柱、肝、肺等结构显示清楚。结论MRI能很好地显示恒河猴子宫的形态、胎儿各部分的结构。对人畸形胎儿的产前诊断有一定的参考价值。  相似文献   

11.

Background

Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC), which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart.

Methods and Results

Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters.

Conclusion

We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.  相似文献   

12.
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.  相似文献   

13.
Activity of cholesterol 7 alpha-hydroxylase (EC 1.14.13.17) in freshly isolated hepatocytes from unweaned piglets (2 to 3 weeks old) was 16-times lower as compared to hepatocytes from weaned piglets (7 to 8 weeks old). The monolayer culture activity of the enzyme remained low in unweaned piglet hepatocytes. In contrast, in cultured hepatocytes from weaned piglets, cholesterol 7 alpha-hydroxylase activity declined during the first day of culture, but was restored during the next 2 culture days, provided that fetal bovine serum (10%) was added to the culture medium. Addition of dexamethasone (50 nM) and insulin (135 nM) to the medium, further enhanced cholesterol 7 alpha-hydroxylase activity to values similar to those in freshly isolated hepatocytes and retarded the decline of enzyme activity after the 3rd culture day. Cultured hepatocytes from weaned and unweaned piglets synthesized similar types of bile acids from [14C]cholesterol, among which hyocholic acid (the most prominent), hyodeoxycholic acid, chenodeoxycholic acid, murocholic acid and lithocholic acid could be identified. 95% of radiolabelled bile acids synthesized was conjugated, mainly with glycine, but also with taurine, sulfate and glucuronic acid. The rate of mass production of bile acids by cultured hepatocytes of weaned piglets (as measured by gas-chromatography) parallelled cholesterol 7 alpha-hydroxylase activity, and was low in the absence of serum, but increased in medium containing fetal bovine serum, dexamethasone and insulin to a rate lying in the range of 75% of the in vivo bile acid production during the 3rd culture day. Bile acid production by unweaned piglet hepatocytes was 3-times lower under these conditions. It is concluded that hepatocytes from young weaned pigs cultured in medium containing 10% fetal bovine serum, offer a suitable in vitro model for the study of bile acid synthesis, in view of the high cholesterol 7 alpha-hydroxylase activities and bile acid production rates.  相似文献   

14.
Bile acid composition and content in the intestine and gallbladder of newborn and fetal rabbits were investigated. Unlike the circumstances in adult rabbits, the bile acids were conjugated with both taurine and glycine. The major bile acids of the fetus and newborn rabbit were cholic acid, chenodeoxycholic acid, and deoxycholic acid. This is different from the known bile acid composition of adult rabbits, in which deoxycholic acid is the major bile acid (> 80%). The proportion of chenodeoxycholic acid was higher in the fetal than in the newborn tissues. The total bile acid pool in the newborn was higher than in the fetus. In the fetus, large proportions of bile acids (60.9%) were associated with the gallbladder fraction, whereas in the newborn the bulk of the bile acids were found with the intestinal fraction (64.4%),  相似文献   

15.
The effect of bile duct ligation during pregnancy in rats (thereby increasing maternal plasma bile acids levels) on the bile acid content and composition in the fetus was examined. In spite of 30-fold increase in maternal plasma cholic acid, the bile acid content in the fetus of bile duct ligated rats was significantly lower (P <0.05) with a significant reduction in cholic acid content. Plasma cholesterol levels of fetuses from bile duct ligated rats were also significantly lower (p <0.05). In addition to the commonly expected bile acids, gas-liquid Chromatographic analysis of the fetal bile acid pool showed peaks corresponding to several secondary bile acids. These results suggest that the transfer of primary bile acids of maternal origin into the fetus is minimal.  相似文献   

16.
A detailed study of the qualitative and quantitative composition of bile acids in human fetal gallbladder bile is described. Bile was collected during early gestation (weeks 16-19) and analyzed by gas chromatography and mass spectrometry, fast atom bombardment ionization mass spectrometry, and high performance liquid chromatography. Bile acids were separated into different conjugate groups by chromatography on the lipophilic anion exchange gel, diethylaminohydroxypropyl Sephadex LH-20. Quantitatively more than 80% of the bile acids were secreted into bile conjugated to taurine. Unconjugated bile acids and glycine conjugates accounted for 5-10% of the total biliary bile acids. Bile acid sulfates were present only in trace amounts indicating that quantitatively sulfation is not an important pathway in bile acid metabolism during development. Total biliary bile acid concentrations were low (0.1-0.4 mM) when compared to reported values for adult bile (greater than 10 mM). Chenodeoxycholic acid was the major biliary bile acid and exceeded cholic acid concentrations by 1.43-fold indicating either a relative immaturity in 12 alpha-hydroxylase activity during early life or a dominance of alternative pathways for chenodeoxycholic acid synthesis. A relatively large proportion of the biliary bile acids comprised metabolites not found in adult bile. The presence of relatively high proportions of hyocholic acid (often greater than cholic acid) and several 1 beta-hydroxycholanoic acid isomers indicates that C-1 and C-6 hydroxylation are important pathways in bile acid synthesis during development. We describe, for the first time, evidence for the existence of a C-4 hydroxylation pathway in the metabolism of bile acids, which may be unique to early human development. Mass spectrometry was used to confirm the identification of 3 alpha,4 beta,7 alpha-trihydroxy-5 beta-cholanoic and 3 alpha,4 beta-dihydroxy-5 beta-cholanoic acids. Quantitatively, these C-4 hydroxylated bile acids accounted for 5-15% of the total biliary bile acids of the fetus, suggesting that C-4 hydroxylation is quantitatively an important pathway in the bile acid metabolism during early life.  相似文献   

17.
Cholic acid is the major trihydroxy bile acid formed in most mammals. The domestic pig (Sus scrofa) is an exception. The bile of adult pig is devoid of cholic acid whereas hyocholic acid is found in amounts equal to that of cholic acid in humans. The pathway leading to formation of hyocholic acid is believed to be species-specific and to have evolved in the pig to compensate for a nonexistent or deficient cholic acid biosynthesis. However, a high level of cholic acid has recently been found in the bile of fetal pig. Here we describe that a gene encoding the key enzyme in cholic acid biosynthesis, the sterol 12alpha-hydroxylase (CYP8B1), is in fact present in the pig genome. The deduced amino acid sequence shows 81% identity to the human and rabbit orthologues. CYP8B1 mRNA is expressed at significant levels in fetal pig liver. Both CYP8B1 and the key enzyme in hyocholic acid formation, taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21), were found to be expressed in pig liver in a developmental-dependent but opposite fashion.  相似文献   

18.
Activity of cholesterol 7α-hydroxylase (EC 1.14.13.17) in freshly isolated hepatocytes from unweaned piglets (2 to 3 weeks old) was 16-times lower as compared to hepatocytes from weaned piglets (7 to 8 weeks old). The monolayer culture activity of the enzyme remained low in unweaned piglet hepatocytes. In contrast, in cultured hepatocytes from weaned piglets, cholesterol 7α-hydroxylase activity declined during the first day of culture, but was restored during the next 2 culture days, provided that fetal bovine serum (10%) was added to the culture medium. Addition of dexamethasone (50 nM) and insulin (135 nM) to the medium, further enhanced cholesterol 7α-hydroxyease activity to values similar to those in freshly isolated hepatocytes and retarded the decline of enzyme activity after the 3rd culture day. Cultured hepatocytes from weaned and unweaned piglets synthesized similar types of bile acids from [14C]cholesterol. among which hyocholic acid (the most prominent), hyodeoxycholic acid, chenodeoxycholic acid, murocholic acid and lithocholic acid could be identified. 95% of radiolabelled bile acids synthesized was conjugated, mainly with glycine, but also with taurine, sulfate and glucuronic acid. The rate of mass production of bile acids by cultured hepatocytes of weaned piglets (as measured by gas-chromatography) parallelled cholesterol 7α-hydroxylase activity, and was low in the absence of serum, but increased in medium containing fetal bovine serum, dexamethasone and insulin to a rate lying in the range of 75% of the in vivo bile acid production during the 3rd culture day. Bile acid production by unweaned piglet hepatocytes was 3-times lower under these conditions. It is concluded that hepatocytes from young weaned pigs cultured in medium containing 10% fetal bovine serum, offer a suitable in vitro model for the study of bile acid synthesis, in view of the high cholesterol 7α-hydroxylase activities and bile acid production rates.  相似文献   

19.
Hepatic sterol carrier protein-2 significantly enhances the microsomal conversion of cholesterol to 7 alpha-hydroxy-cholesterol. In the present work we have attempted to correlate the hepatic content of sterol carrier protein-2 with bile acid formation. We have determined the amount of this protein in a variety of physiological and experimental conditions, in which the rate of bile acid synthesis varies over a wide range, viz. during fetal development, in inbred strains of rats with different rates of bile acid synthesis, and in rats fed diets containing drugs which modify the rate of bile acid synthesis. The outcome of these experiments does not support the idea that sterol carrier protein-2 has any association with bile acid synthesis. From our data we further conclude that hepatic sterol carrier protein-2 is an adaptable protein because its level increases during development from the fetal to the post-weaning stage of the rat and since it can be modulated by oral administration of certain drugs. Furthermore, it is demonstrated that the level of sterol carrier protein-2 varies between six inbred strains of rats.  相似文献   

20.
We studied the effects of thromboxane-receptor antagonism and thromboxane synthetase inhibition in a thrombotic model of sudden death in mice. Intravenous injection of arachidonic acid (AA; 80 mg/kg) or the prostaglandin-endoperoxide analog U-46,619 (2.3 mg/kg) results in sudden death in approximately 90% of the animals. Pretreatment with the thromboxane receptor antagonist SQ-29,548 (0.3-10 mg/kg) protects dose-dependently against AA and U-46,619-induced sudden death. In contrast, CGS-13,080, a thromboxane synthetase inhibitor, shows a dose-dependent beneficial effect in AA-induced sudden death only. Although PTA2 has partial thromboxane agonistic properties in the rabbit, it protected the mice against AA-induced sudden death, thus demonstrating TxA2 antagonistic properties in this species. These data emphasize the importance of thromboxane A2 as a major mediator of arachidonic acid-induced sudden death and the effectiveness of thromboxane-receptor antagonists in endoperoxide-induced sudden death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号