首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 28-amino-acid neuropeptide VIP and related peptides PACAP and PHI/PHM modulate virtually all of the vital functions in the body. These peptides are also commonly recognized as major regulators of cell growth and differentiation. Through their trophic and cytoprotective functions, they appear to play major roles in embryonic development, neurogenesis and the progression of a number of cancer types. These peptides bind to three well-characterized subtypes of G-protein coupled receptors: VPAC1 and VPAC2 share a common high affinity in the nanomolar range for VIP and PACAP; a third receptor type, PAC1, has been characterized for its high affinity for PACAP but its low affinity for VIP. Complex effects and pharmacological behaviors of these peptides suggest that multiple subtypes of binding sites may cooperate to mediate their function in target cells and tissues. In this complex response, some of these binding sites correspond to the definition of the conventional receptors cited above, while others display unexpected pharmacological and functional properties. Here we present potential clues that may lead investigators to further characterize the molecular nature and functions of these atypical binding species.  相似文献   

2.
Neuroendocrine tumours (NETs) may occur at many sites in the body although the majority occur within the gastroenteropancreatic axis. Non-gastroenteropancreatic NETs encompass phaeochromocytomas and paragangliomas, medullary thyroid carcinoma, anterior pituitary tumour, broncho-pulmonary NETs and parathyroid tumours. Like most endocrine tumours, NETs also express somatostatin (SST) receptors (subtypes 1–5) whose ligand SST is known to inhibit endocrine and exocrine secretions and have anti-tumour effects. In the light of this knowledge, the idea of using SST analogues in the treatment of NETs has become increasingly popular and new studies have centred upon the development of new SST analogues. We attempt to review SST receptor (SSTR) biology primarily in neuroendocrine tissues, focusing on pituitary tumours. A full data search was performed through PubMed over the years 2000–2009 with keywords ‘somatostatin, molecular biology, somatostatin receptors, somatostatin signalling, NET, pituitary’ and all relevant publications have been included, together with selected publications prior to that date. SSTR signalling in non-neuroendocrine solid tumours is beyond the scope of this review. SST is a potent anti-proliferative and anti-secretory agent for some NETs. The successful therapeutic use of SST analogues in the treatment of these tumours depends on a thorough understanding of the diverse effects of SSTR subtypes in different tissues and cell types. Further studies will focus on critical points of SSTR biology such as homo- and heterodimerization of SSTRs and the differences between post-receptor signalling pathways of SSTR subtypes.  相似文献   

3.
4.
Lysophosphatidic acid and its role in reproduction   总被引:1,自引:0,他引:1  
Lysophosphatidic acid (LPA) belongs to a new family of lipid mediators that are endogenous growth factors and that elicit diverse biological effects, usually via the activation of G protein-coupled receptors. LPA can be generated after cell activation through the hydrolysis of preexisting phospholipids in the membranes of stimulated cells. A dramatic elevation of LPA levels was found in serum of patients suffering from ovarian carcinoma. Because these high LPA amounts can be detected as early as stage I of the disease, LPA has been introduced as a new marker for ovarian cancer. Progression of the malignancy is correlated with a differential expression of various LPA receptor subtypes. The presence of LPA in the follicular fluid of healthy individuals implicates that this biological mediator may be relevant to normal ovarian physiology. LPA induces proliferation and mitogenic signaling of prostate cancer cells, and a novel LPA receptor isoform has been recognized in healthy prostate tissues. This evidence indicates multiple roles for LPA in both male and female reproductive physiology and pathology. In this review, we summarize the literature on LPA generation, the way it is degraded, and the mechanisms by which signals are transduced by various LPA receptors in reproductive tissues, and we discuss possible future research directions in these areas.  相似文献   

5.
The isthmo‐optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain‐derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin‐4 (NT‐4), glial cell line–derived neurotrophic factor (GDNF), and insulin‐like growth factor I (IGF‐I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target‐derived trophic factors for the ION in 13‐ to 16‐day‐old chick embryos. Unlike BDNF, neither GDNF, NT‐4, nor IGF‐I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF‐I promoted neurite outgrowth from ION explants, whereas GDNF and NT‐4 had no effect. Injections of NT‐4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT‐4–like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT‐4, but not GDNF or IGF‐I, was retrogradely transported from the retina to the ION. NT‐4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT‐4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT‐4 to chick p75 receptors was confirmed in L‐cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF‐I may be an afferent trophic factor for the ION, and NT‐4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 289–303, 2000  相似文献   

6.
Lysophosphatidic acid (LPA), a water-soluble phospholipid, has gained significant attention in recent years since the discovery that it acts as a potent signaling molecule with wide-ranging effects on many different target tissues. There are currently five identified G protein-coupled receptors for LPA and more are undergoing validation. The complexity of the expression pattern and signaling properties of LPA receptors results in multiple influences on developmental, physiological, and pathological processes. This review provides a summary of LPA receptor signaling and current views on the potential involvement of this pathway in human diseases that include cardiovascular, cancer, neuropathic pain, neuropsychiatric disorders, reproductive disorders, and fibrosis. The involvement of LPA signaling in these processes implicates multiple, potential drug targets including LPA receptor subtypes and LPA metabolizing enzymes. Modulation of LPA signaling may thus provide therapeutic inroads for the treatment of human disease.  相似文献   

7.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and NT4/5 are all found in the developing cerebellum. Granule cells, the major target neurons of mossy fibers, express BDNF during mossy fiber synaptogenesis. To determine whether neurotrophins contribute to the development of cerebellar afferent axons, we characterized the effects of neurotrophins on the growth of mossy fiber neurons from mice and rats in vitro. For a mossy fiber source, we used the basilar pontine nuclei (BPN), the major source of cerebellar mossy fibers in mammals. BDNF and NT4/5 increased BPN neuron survival, neurite outgrowth, growth cone size, and elongation rate, while neither NT3 nor NGF increased survival or outgrowth. In addition, BDNF and NT4/5 reduced the size of neurite bundles. Consistent with these effects, in situ hybridization on cultured basilar pontine neurons revealed the presence of mRNA encoding the TrkB receptor which binds both BDNF and NT4/5 with high affinity. We detected little or no message encoding the TrkC receptor which preferentially binds NT3. BDNF and NT4/5 also increased TrkB mRNA levels in BPN neurons. In addition to previously established functions as an autocrine/paracrine trophic factor for granule cells, the present results indicate that cerebellar BDNF may also act as a target-derived trophic factor for basilar pontine mossy fibers.  相似文献   

8.
Gain-of-function mutations of ret receptor tyrosine kinase, the signaling receptor for glial cell line-derived neurotrophic factor, cause sporadic thyroid and adrenal malignancies as well as endocrine cancer syndromes, such as multiple endocrine neoplasia types 2A and 2B (MEN 2A and MEN 2B) and familial medullary thyroid carcinoma. Loss-of-function mutations of ret cause Hirschsprung's disease (HSCR) or colonic aganglionosis. In 20-30% of families with a mutation at residues 609, 611, 618, or 620 of RET, MEN 2A and familial medullary thyroid carcinoma cosegregate with HSCR. These mutations constitutively activate RET due to aberrant disulfide homodimerization and diminish the level of RET at the plasma membrane. It is not known how these mutations simultaneously lead to both gain- and loss-of-function RET-associated diseases. We provide an explanation for the dual phenotypic Janus mutation at Cys620 of RET. In Madin-Darby canine kidney (MDCK) cells, the Janus mutation impairs the glial cell line-derived neurotrophic factor-induced effects of RET on cell migration, differentiation, and survival but simultaneously promotes rapid cell proliferation.  相似文献   

9.
5-Hydroxytryptamine receptor "families"   总被引:11,自引:0,他引:11  
The identification of multiple receptor subtypes for 5-hydroxytryptamine (5-HT) made by using radioligand binding techniques proliferated at a brisk rate in the 1980s. The application of molecular biological techniques to 5-HT receptor studies is likely to lead to an expansion rather than a reduction in the number of distinct 5-HT receptor subtypes. Although the current status of 5-HT receptor pharmacology may appear to be overwhelmingly confusing to most investigators, the evolving data suggest that 5-HT receptor subtypes can be categorized into three major families. Each family consists of multiple receptor subtypes that share similarities in their molecular biological, pharmacological, biochemical, and/or physiological properties. This review provides a summary of recent data as well as a framework for the classification of 5-HT receptor subtypes.  相似文献   

10.
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.  相似文献   

11.
12.

Background

Beclin 1 is a key regulator of multiple trafficking pathways, including autophagy and receptor recycling in yeast and microglia. Decreased beclin 1 levels in the CNS result in neurodegeneration, an effect attributed to impaired autophagy. However, neurons also rely heavily on trophic factors, and signaling through these pathways requires the proper trafficking of trophic factor receptors.

Results

We discovered that beclin 1 regulates signaling through the neuroprotective TGF-β pathway. Beclin 1 is required for recycling of the type I TGF-β receptor ALK5. We show that beclin 1 recruits the retromer to ALK5 and facilitates its localization to Rab11+ endosomes. Decreased levels of beclin 1, or its binding partners VPS34 and UVRAG, impair TGF-β signaling.

Conclusions

These findings identify beclin 1 as a positive regulator of a trophic signaling pathway via receptor recycling, and suggest that neuronal death induced by decreased beclin 1 levels may also be due to impaired trophic factor signaling.
  相似文献   

13.
14.
The extracellular calcium-sensing receptor (CaSR) in fishes, like the CaSRs of tetrapod vertebrates, is a dimeric seven transmembrane, G protein-coupled receptor. The receptor is expressed on the plasma membranes of a variety of tissues and cells where it functions as a sensor of extracellular calcium concentration ([Ca(2+)](o)) in the physiological range. In the context of systemic calcium homeostasis, CaSR expressed in endocrine tissues that secrete calciotropic and other hormones (pituitary gland and corpuscles of Stannius) may play a central role in global integrative signaling, whereas receptor expressed in ion-transporting tissues (kidney, intestine, gills, and elasmobranch rectal gland) may have local direct effects on monovalent and divalent ion transport that are independent of endocrine signaling. In fishes, specifically, CaSR expression at the body surface (at the gills and olfactory tissues, for example) may permit direct sensing of environmental Ca(2+) and Mg(2+) concentrations, especially in the marine environment. Additionally, CaSRs may have other widespread and diverse roles in extracellular Ca(2+) sensing related both to organismal calcium homeostasis and to intercellular Ca(2+) signaling. As a consequence of the broad spectrum of recognized ligands, including polyvalent cations and amino acids, and of binding site shielding by monovalent cations, additional receptor functionalities related to salinity and nutrient detection are proposed for CaSRs. CaSR expression in the gastrointestinal tract may be multifunctional as a sensor for polyvalent cations and amino acids. Structural and phylogenetic analyses reveal strongly conserved features among CaSRs, and suggest that calcium sensing by mammalian parathyroid gland-type CaSR proteins may be restricted to chordates. Comparative functional and genomic studies that include piscine CaSRs can be useful model systems for testing existing hypotheses regarding receptor function, and will shed light on the evolutionary developmental history of calcium homeostasis in the vertebrates.  相似文献   

15.
The extracellular calcium-sensing receptor (CaSR) in fishes, like the CaSRs of tetrapod vertebrates, is a dimeric seven transmembrane, G protein-coupled receptor. The receptor is expressed on the plasma membranes of a variety of tissues and cells where it functions as a sensor of extracellular calcium concentration ([Ca(2+)](o)) in the physiological range. In the context of systemic calcium homeostasis, CaSR expressed in endocrine tissues that secrete calciotropic and other hormones (pituitary gland and corpuscles of Stannius) may play a central role in global integrative signaling, whereas receptor expressed in ion-transporting tissues (kidney, intestine, gills, and elasmobranch rectal gland) may have local direct effects on monovalent and divalent ion transport that are independent of endocrine signaling. In fishes, specifically, CaSR expression at the body surface (at the gills and olfactory tissues, for example) may permit direct sensing of environmental Ca(2+) and Mg(2+) concentrations, especially in the marine environment. Additionally, CaSRs may have other widespread and diverse roles in extracellular Ca(2+) sensing related both to organismal calcium homeostasis and to intercellular Ca(2+) signaling. As a consequence of the broad spectrum of recognized ligands, including polyvalent cations and amino acids, and of binding site shielding by monovalent cations, additional receptor functionalities related to salinity and nutrient detection are proposed for CaSRs. CaSR expression in the gastrointestinal tract may be multifunctional as a sensor for polyvalent cations and amino acids. Structural and phylogenetic analyses reveal strongly conserved features among CaSRs, and suggest that calcium sensing by mammalian parathyroid gland-type CaSR proteins may be restricted to chordates. Comparative functional and genomic studies that include piscine CaSRs can be useful model systems for testing existing hypotheses regarding receptor function, and will shed light on the evolutionary developmental history of calcium homeostasis in the vertebrates.  相似文献   

16.
垂体腺苷酸环化酶激活肽的研究概况   总被引:1,自引:0,他引:1  
垂体腺苷酸环化酶激活肽(PACAP)及其受体存在于许多动物的下丘脑和垂体中,而且在肾上腺、睾丸、卵巢、肝脏、肾脏、胰腺、松果腺、心脏、脊椎、神经节、呼吸系统和消化系统等组织或系统中也存在,其中肾上腺含量最高.在这些组织或系统中,通过Ca2+、Na+、腺苷酸环化酶或磷酸肌醇等作用通路,PACAP发挥神经递质/调质、或神经营养因子等生物学功能.  相似文献   

17.
Two fibroblast growth factor (FGF) receptor substrates (FRS2 and FRS3) are involved in downstream signaling from activated FGF receptors and neurotrophin-activated Trk receptors. Despite the importance of signaling from these factors in embryogenesis, FRS2 and FRS3 expression patterns during development are unknown. In this study we characterize the expression of FRS2 and FRS3 from E7 to parturition and in adult murine tissues. Both are first detected in whole E8.5 CD1 mouse embryos. FRS2 is detected as early as E7 in the developing syncytiotrophoblast, later in the neural tube (NT) and in many adult and fetal tissues. FRS3 is more restricted in location than FRS2 (fetal NT, heart, stomach, liver and some adult tissues), and is expressed predominantly in the ventricular layer of the developing NT and brains of murine embryos.  相似文献   

18.
19.
Neurotensin (NT) is a gut peptide that plays an important role in gastrointestinal (GI) secretion, motility, and growth as well as the proliferation of NT receptor positive cancers. Secretion of NT is regulated by phorbol ester-sensitive protein kinase C (PKC) isoforms-alpha and -delta and may involve protein kinase D (PKD). The purpose of our present study was: (i) to define the role of PKD in NT release from BON endocrine cells and (ii) to delineate the upstream signaling mechanisms mediating this effect. Here, we demonstrate that small interfering RNA (siRNA) targeted against PKD dramatically inhibited both basal and PMA-stimulated NT secretion; NT release is significantly increased by overexpression of PKD. PKC-alpha and -delta siRNA attenuated PKD activity, whereas overexpression of PKC-alpha and -delta enhanced PKD activity. Rho kinase (ROK) siRNA significantly inhibited NT secretion, whereas overexpression of ROKalpha effectively increased NT release. Rho protein inhibitor C3 dramatically inhibited both NT secretion and PKD activity. In conclusion, our results demonstrate that PKD activation plays a central role in NT peptide secretion; upstream regulators of PKD include PKC-alpha and -delta and Rho/ROK. Importantly, our results identify novel signaling pathways, which culminate in gut peptide release.  相似文献   

20.
Signaling pathways mediating gastrin's growth-promoting effects.   总被引:2,自引:0,他引:2  
R R Yassin 《Peptides》1999,20(7):885-898
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号