首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intra-abdominal pressure mechanism for stabilizing the lumbar spine   总被引:8,自引:0,他引:8  
Currently, intra-abdominal pressure (IAP) is thought to provide stability to the lumbar spine but the exact principles have yet to be specified. A simplified physical model was constructed and theoretical calculations performed to illustrate a possible intra-abdominal pressure mechanism for stabilizing the spine. The model consisted of an inverted pendulum with linear springs representing abdominal and erector spinae muscle groups. The IAP force was simulated with a pneumatic piston activated with compressed air. The critical load of the model was calculated theoretically based on the minimum potential energy principle and obtained experimentally by increasing weight on the model until the point of buckling. Two distinct mechanisms were simulated separately and in combination. One was antagonistic flexor extensor muscle coactivation and the second was abdominal muscle activation along with generation of IAP. Both mechanisms were effective in stabilizing the model of a lumbar spine. The critical load and therefore the stability of the spine model increased with either increased antagonistic muscle coactivation forces or increased IAP along with increased abdominal spring force. Both mechanisms were also effective in providing mechanical stability to the spine model when activated simultaneously. Theoretical calculation of the critical load agreed very well with experimental results (95.5% average error). The IAP mechanism for stabilizing the lumbar spine appears preferable in tasks that demand trunk extensor moment such as lifting or jumping. This mechanism can increase spine stability without the additional coactivation of erector spinae muscles.  相似文献   

2.
3.
Intra-abdominal pressure (IAP) increases during many tasks and has been argued to increase stability and stiffness of the spine. Although several studies have shown a relationship between the IAP increase and spinal stability, it has been impossible to determine whether this augmentation of mechanical support for the spine is due to the increase in IAP or the abdominal muscle activity which contributes to it. The present study determined whether spinal stiffness increased when IAP increased without concurrent activity of the abdominal and back extensor muscles. A sustained increase in IAP was evoked by tetanic stimulation of the phrenic nerves either unilaterally or bilaterally at 20 Hz (for 5 s) via percutaneous electrodes in three subjects. Spinal stiffness was measured as the force required to displace an indentor over the L4 or L2 spinous process with the subjects lying prone. Stiffness was measured as the slope of the regression line fitted to the linear region of the force-displacement curve. Tetanic stimulation of the diaphragm increased IAP by 27-61% of a maximal voluntary pressure increase and increased the stiffness of the spine by 8-31% of resting levels. The increase in spinal stiffness was positively correlated with the size of the IAP increase. IAP increased stiffness at L2 and L4 level. The results of this study provide evidence that the stiffness of the lumbar spine is increased when IAP is elevated.  相似文献   

4.
Posteroanterior stiffness of the lumbar spine is influenced by factors, including trunk muscle activity and intra-abdominal pressure (IAP). Because these factors vary with breathing, this study investigated whether stiffness is modulated in a cyclical manner with respiration. A further aim was to investigate the relationship between stiffness and IAP or abdominal and paraspinal muscle activity. Stiffness was measured from force-displacement responses of a posteroanterior force applied over the spinous process of L2 and L4. Recordings were made of IAP and electromyographic activity from L4/L2 erector spinae, abdominal muscles, and chest wall. Stiffness was measured with the lung volume held at the extremes of tidal volume and at greater and lesser volumes. Stiffness at L4 and L2 increased above base-level values at functional residual capacity (L2 14.9 N/mm and L4 15.3 N/mm) with both inspiratory and expiratory efforts. The increase was related to the respiratory effort and was greatest during maximum expiration (L2 24.9 N/mm and L4 23.9 N/mm). The results indicate that changes in trunk muscle activity and IAP with respiratory efforts modulate spinal stiffness. In addition, the diaphragm may augment spinal stiffness via attachment of its crural fibers to the lumbar vertebrae.  相似文献   

5.
Kaçmaz A  Polat A  User Y  Tilki M  Ozkan S  Sener G 《Peptides》2003,24(9):1381-1386
Acutely increased intra-abdominal pressure (IAP) may lead to abdominal compartment syndrome (ACS), which ischaemia/reperfusion (I/R) injury plays an important role. The main goal of the management of ACS is to lower the intra-abdominal pressure despite reperfusion injury. Octreotide (OCT), a synthetic somatostatin analogue, lowers the splanchnic perfusion. The aim of this study was to investigate whether OCT improves the reperfusion injury after decompression of acute abdominal hypertension.Under anesthesia, a catheter was inserted intraperitoneally and using an aneroid manometer connected to the catheter, IAP was kept at 20 mmHg (ischemia group; I) for 1h. In the I/R group, pressure applied for an hour was decompressed and 1h reperfusion period was allowed. In another group of I/R, OCT was administered (50 microg/kg i.p.) immediately before the decompression of IAP. The results demonstrate that kidney and lung tissues of malondialdehyde (MDA; an end product of lipid peroxidation) levels and myeloperoxidase (MPO; index of tissue neutrophil infiltration) activity were elevated, while glutathione (GSH; a key to antioxidant) levels were reduced in I/R group (P<0.001). Moreover, OCT treatment applied in the I/R group reduced the elevations in blood urea nitrogen (BUN) and serum creatinine levels. Our results implicate that IAP causes oxidative organ damage and OCT, by reducing splanchnic perfusion and controlling the reperfusion of abdominal organs, could improve the reperfusion-induced oxidative damage. Therefore, its therapeutic role as a "reperfusion injury-limiting" agent must be further elucidated in IAP-induced abdominal organ injury.  相似文献   

6.
Determination of physiological loads in human lumbar spine is critical for understanding the mechanisms of lumbar diseases and for designing surgical treatments. Computational models have been used widely to estimate the physiological loads of the spine during simulated functional activities. However, various assumptions on physiological factors such as the intra-abdominal pressure (IAP), centers of mass (COMs) of the upper body and lumbar segments, and vertebral centers of rotation (CORs) have been made in modeling techniques. Systematic knowledge of how these assumptions will affect the predicted spinal biomechanics is important for improving the simulation accuracy. In this paper, we developed a 3D subject-specific numerical model of the lumbosacral spine including T12 and 90 muscles. The effects of the IAP magnitude and COMs locations on the COR of each motion segment and on the joint/muscle forces were investigated using a global convergence optimization procedure when the subject was in a weight bearing standing position. The data indicated that the line connecting the CORs showed a smaller curvature than the lordosis of the lumbar spine in standing posture when the IAP was 0?kPa and the COMs were 10?mm anterior to the geometric center of the T12 vertebra. Increasing the IAP from 0 kPa to 10 kPa shifted the location of CORs toward the posterior direction (from 1.4?±?8.9 mm anterior to intervertebral disc (IVD) centers to 40.5?±?3.1 mm posterior to the IVD centers) and reduced the average joint force (from 0.78?±?0.11 Body weight (BW) to 0.31?±?0.07 BW) and overall muscle force (from 349.3?±?57.7 N to 221.5?±?84.2 N). Anterior movement of the COMs from -30 mm to 70 mm relative to the geometric center of T12 vertebra caused an anterior shift of the CORs (from 25.1?±?8.3 mm posterior to IVD centers to 7.8?±?6.2 mm anterior to IVD centers) and increases of average joint forces (from 0.78?±?0.1 BW to 0.93?±?0.1 BW) and muscle force (from 348.9?±?47.7 N to 452.9?±?58.6 N). Therefore, it is important to consider the IAP and correct COMs in order to accurately simulate human spine biomechanics. The method and results of this study could be useful for designing prevention strategies of spinal injuries and recurrences, and for enhancing rehabilitation efficiency.  相似文献   

7.
8.
Abdominal bracing is a voluntary method of increasing spine stiffness to restrict spine displacement. Previous investigations of abdominal bracing have measured effects on whole lumbar motion; however, how this effect is distributed across the lumbar spine is unknown. Therefore, this study was designed to test the influence of abdominal bracing on spine intersegmental (T9/T10 to L5/S1) flexion, measured via skin surface markers, in response to sudden loading perturbations applied through the hands in 16 young healthy participants. Abdominal and back muscle activation responses were also measured. The results demonstrated that abdominal bracing significantly reduced sagittal plane motion at intersegmental levels T12/L1 to L4/L5, by 45% (0.74 degrees) at L4/L5 to 94% (0.71 degrees) at L1/L2 compared to control. L5/S1 experienced a 50% (0.36 degrees) reduction, but this was not statistically significant. Additionally, abdominal bracing resulted in greater baseline activation of all abdominal and back muscles, but did not affect onset times or response magnitudes of any of the back muscles acting counter to the perturbation. Therefore, the elevated baseline activation of trunk musculature during an abdominal brace serves to restrict flexion motion at the majority of the intersegmental lumbar spine (T12/L1 to L4/5) in response to sudden trunk flexion perturbations.  相似文献   

9.
Stability of the lumbar spine is an important factor in determining spinal response to sudden loading. Using two different methods, this study evaluated how various trunk load magnitudes and directions affect lumbar spine stability. The first method was a quick release procedure in which effective trunk stiffness and stability were calculated from trunk kinematic response to a resisted-force release. The second method combined trunk muscle EMG data with a biomechanical model to calculate lumbar spine stability. Twelve subjects were tested in trunk flexion, extension, and lateral bending under nine permutations of vertical and horizontal trunk loading. The vertical load values were set at 0, 20, and 40% of the subject's body weight (BW). The horizontal loads were 0, 10, and 20% of BW. Effective spine stability as obtained from quick release experimentation increased significantly (p<0.01) with increased vertical and horizontal loading. It ranged from 785 (S.D.=580) Nm/rad under no-load conditions to 2200 (S.D.=1015) Nm/rad when the maximum horizontal and vertical loads were applied to the trunk simultaneously. Stability of the lumbar spine achieved prior to force release and estimated from the biomechanical model explained approximately 50% of variance in the effective spine stability obtained from quick release trials in extension and lateral bending (0.53相似文献   

10.
The thoracolumbar fascia (TLF) provides a means of attachment to the lumbar spine for several muscles including the transverse abdominis, and parts of the latissimus dorsi and internal oblique muscles. Previous biomechanical models of the lumbar spine either tend to omit the TLF on the assumption that its contribution would be negligible or incorporate only part of the TLF. Here, a three-dimensional model of the posterior and middle layers of the TLF is presented to enable its action to be included in future three-dimensional models of the spine. It is used illustratively to estimate the biomechanical influence of this structure on the lumbar spine. The formulation of the model allows the lines of action of the fibres comprising the fascia to be calculated for any posture whilst ensuring that anatomical constraints are satisfied. Application of the model suggests that the TLF produces moments primarily in flexion and extension. The simulated results demonstrate that the abdominal muscles, acting via the TLF, are capable of contributing extension moments comparable to those produced by other smaller muscles associated with the lumbar spine.  相似文献   

11.
A non-linear poroelastic finite element model of the lumbar spine was developed to investigate spinal response during daily dynamic physiological activities. Swelling was simulated by imposing a boundary pore pressure of 0.25 MPa at all external surfaces. Partial saturation of the disc was introduced to circumvent the negative pressures otherwise computed upon unloading. The loading conditions represented a pre-conditioning full day followed by another day of loading: 8 h rest under a constant compressive load of 350 N, followed by 16 h loading phase under constant or cyclic compressive load varying in between 1000 and 1600 N. In addition, the effect of one or two short resting periods in the latter loading phase was studied.The model yielded fairly good agreement with in-vivo and in-vitro measurements. Taking the partial saturation of the disc into account, no negative pore pressures were generated during unloading and recovery phase. Recovery phase was faster than the loading period with equilibrium reached in only ~3 h. With time and during the day, the axial displacement, fluid loss, axial stress and disc radial strain increased whereas the pore pressure and disc collagen fiber strains decreased. The fluid pressurization and collagen fiber stiffening were noticeable early in the morning, which gave way to greater compression stresses and radial strains in the annulus bulk as time went by. The rest periods dampened foregoing differences between the early morning and late in the afternoon periods. The forgoing diurnal variations have profound effects on lumbar spine biomechanics and risk of injury.  相似文献   

12.
Intra-abdominal pressure (IAP), force and electromyographic (EMG) activity from the abdominal (intra-muscular) and trunk extensor (surface) muscles were measured in seven male subjects during maximal and sub-maximal sagittal lifting and lowering with straight arms and legs. An isokinetic dynamometer was used to provide five constant velocities (0.12–0.96 m·s–1) of lifting (pulling against the resistance of the motor) and lowering (resisting the downward pull of the motor). For the maximal efforts, position-specific lowering force was greater than lifting force at each respective velocity. In contrast, corresponding IAPs during lowering were less than those during lifting. Highest mean force occurred during slow lowering (1547 N at 0.24 m·s–1) while highest IAP occurred during the fastest lifts (17.8 kPa at 0.48–0.96 m·s–1). Among the abdominal muscles, the highest level of activity and the best correlation to variations in IAP (r=0.970 over velocities) was demonstrated by the transversus abdominis muscle. At each velocity the EMG activity of the primary trunk and hip extensors was less during lowering (eccentric muscle action) than lifting (concentric muscle action) despite higher levels of force (r between –0.896 and –0.851). Sub-maximal efforts resulted in IAP increasing linearly with increasing lifting or lowering force (r=0.918 and 0.882, respectively). However, at any given force IAP was less during lowering than lifting. This difference was negated if force and IAP were expressed relative to their respective lifting and lowering maxima. It appears that the IAP increase primarily accomplished by the activation of the transversus abdominis muscle can have the dual function of stabilising the trunk and reducing compression forces in the lumbar spine via its extensor moment. The neural mechanisms involved in sensing and regulating both IAP and trunk extensor activity in relation to the type of muscle action, velocity and effort during the maximal and sub-maximal loading tasks are unknown.  相似文献   

13.
There is a clear relationship between lumbar spine loading and back musculoskeletal disorders in manual materials handling. The incidence of back disorders is greater in women than men, and for similar work demands females are functioning closer to their physiological limit. It is crucial to study loading on the spine musculoskeletal system with actual handlers, including females, to better understand the risk of back disorders. Extrapolation from biomechanical studies conducted on unexperienced subjects (mainly males) might not be applicable to actual female workers. For male workers, expertise changes the lumbar spine flexion, passive spine resistance, and active/passive muscle forces. However, experienced females select similar postures to those of novices when spine loading is critical. This study proposes that the techniques adopted by male experts, male novices, and females (with considerable experience but not categorized as experts) impact their lumbar spine musculoskeletal systems differently. Spinal loads, muscle forces, and passive resistance (muscle and ligamentous spine) were predicted by a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine. Expert males flexed their lumbar spine less (avg. 21.9° vs 30.3–31.7°) and showed decreased passive internal moments (muscle avg. 8.9% vs 15.9–16.0%; spine avg. 4.7% vs 7.1–7.8%) and increased active internal moments (avg. 72.9% vs 62.0–63.9%), thus producing a different impact on their lumbar spine musculoskeletal systems. Experienced females sustained the highest relative spine loads (compression avg. 7.3 N/BW vs 6.2–6.4 N/BW; shear avg. 2.3 N/BW vs 1.7–1.8 N/BW) in addition to passive muscle and ligamentous spine resistance similar to novices. Combined with smaller body size, less strength, and the sequential lifting technique used by females, this could potentially mean greater risk of back injury. Workers should be trained early to limit excessive and repetitive stretching of their lumbar spine passive tissues.  相似文献   

14.
15.
The manner in which islet-activating protein (IAP), a protein purified from the culture medium of Bordetella pertussis, interacts with the islet B-cell was studied by following the progressive development of IAP-induced reversal of alpha-adrenergic inhibition of insulin release during maintenance of islets in culture with glucose and epinephrine. This action of IAP developed in an exponential manner dependent on its concentration after a true lag period of about 1 h. The lag period was not grossly dependent on the concentration of IAP added but highly dependent on temperature of culture, and was still seen upon adding a second dose of IAP to partially stimulated cells. After 24-h culture significantly more insulin was secreted with IAP at a concentration as low as 1 pg/ml and the half-maximal effect was observed at 0.1 ng/ml. The development of IAP action occurred even in the islets that had been exposed to IAP for only 30 s, but was significantly prevented by anti-IAP serum added before the end of the lag period. IAP was effective in the presence of cycloheximide, an inhibitor of protein synthesis, or of vinblastine or cytochalasin B, microtubular-microfilamentous modifiers. It is suggested that the IAP molecule is rapidly bound to the receptor area of the islet B-cell and then is gradually inserted into the cell membrane before appearance of its action to activate native calcium ionophores. This slow interaction of IAP with the membrane may be responsible for potentiation of insulin secretory and cAMP responses of the cell to various stimuli as well as for reversal of alpha-adrenergic inhibition.  相似文献   

16.
This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc.  相似文献   

17.
The death and survival of neuronal cells are regulated by various signaling pathways during development of the brain and in neuronal diseases. Previously, we demonstrated that the neuronal adhesion molecule brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is involved in brain-derived neurotrophic factor (BDNF)-promoted neuronal cell survival. Here, we report the apoptosis-inducing effect of CD47/integrin-associated protein (IAP), the heterophilic binding partner of BIT/SHPS-1, on neuronal cells. We generated a recombinant adenovirus vector expressing a neuronal form of CD47/IAP, and found that the expression of CD47/IAP by infection with CD47/IAP adenovirus induced the death of cultured cerebral cortical neurons. The numbers of TdT-mediated biotin-dUTP nick-end labelling (TUNEL)-positive neurons and of cells displaying apoptotic nuclei increased by expression of CD47/IAP. Neuronal cell death was prevented by the addition of the broad-spectrum caspase inhibitor Z-VAD-fmk. Furthermore, we observed that co-expression of CD47/IAP with BIT/SHPS-1 enhanced neuronal cell death, and that BDNF prevented it. These results suggest that CD47/IAP is involved in a novel pathway which regulates caspase-dependent apoptosis of cultured cerebral cortical neurons. CD47/IAP-induced death of cultured cortical neurons may be regulated by the interaction of CD47/IAP with BIT/SHPS-1 and by BDNF.  相似文献   

18.
Besides protecting the internal organs of the thorax, the rib cage is the site of numerous muscle attachments. It also decreases the overall flexibility of the thoracic spine. This study developed finite element (FE) models of the thoracic spine with and without the rib cage, and the effects of the rib cage on thoracic spine flexibility were determined. The numerical models were validated by comparing the maximum rotation of the models for several loading cases with experimental data in the literature. After adapting the material properties for the discs and ligaments, the calculated maximum rotations differed from the measured median values by less than 1 degrees without the rib cage and by less than 2.5 degrees with it. The rib cage decreased the mean flexibility of the thoracic spine by 23% to 47%, depending on the loading plane. Assuming the ribs to be rigid beams required a corresponding reduction of ligament stiffnesses in order to achieve the same agreement of the maximum rotations with the measured median values. Interconnecting the FE thoracic spine model plus rib cage with the existing detailed FE lumbar spine model improves the simulation of force directions of muscles attached to the rib cage or thoracolumbar spine. In addition, such a model is suitable for determining the effects of lumbar spine implants on spinal balance.  相似文献   

19.
The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 +/- 8.50%, 86.55 +/- 1.13%, and 83.84 +/- 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 +/- 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 +/- 7.73% and 62.13 +/- 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.  相似文献   

20.
Serum-induced DNA synthesis, as measured by increases in [3H]thymidine incorporation, in Swiss mouse 3T3 fibroblasts was markedly inhibited by exposure of the cells to islet-activating protein (IAP), pertussis toxin. The inhibition was well correlated with the toxin-induced ADP-ribosylation of a membrane GTP-binding protein with Mr = 41,000. The IAP-induced inhibition of cell growth was characterized by the following two features. First, the inhibition was selective to certain growth factors. DNA synthesis in 3T3 cells was supported by a combination of one of the competence factors and a progression factor such as insulin or epidermal growth factor. IAP was inhibitory when thrombin, fibroblast growth factor, prostaglandin F2 alpha, or phosphatidic acid was employed as a competence factor, but was not inhibitory when DNA synthesis was induced by combined addition of cholera toxin or phorbol ester with insulin. Second, IAP-induced inhibition was still observed when the toxin was added to cell culture 1-6 h later than the addition of the IAP-sensitive competence factors, which triggered rapid cellular responses such as adenylate cyclase inhibition, releases of inositol trisphosphate and arachidonic acid, and 45Ca influx within several minutes (Murayama, T., and Ui, M. (1985) J. Biol. Chem. 260, 7226-7233; Murayama, T., and Ui, M. (1987) J. Biol. Chem. 262, 5522-5529). Thus, IAP substrate GTP-binding protein(s) appears to be involved in the duration of rapid signals or the occurrence of new slow signals which are responsible for growth factor-induced cell proliferation. The site of the involvement may be proximal to protein phosphorylation by phorbol ester-activated and cAMP-dependent kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号