首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petite-negative yeasts do not form viable respiratory-deficient mutants on treatment with DNA-targeting drugs that readily eliminate the mitochondial DNA (mtDNA) from petite-positive yeasts. However, in the petite-negative yeastKluyveromyces lactis, specific mutations in the nuclear genesMGI2 andMGI5 encoding the- and-subunits of the mitochondrial F1-ATPase, allow mtDNA to be lost. In this study we show that wild-typeK. lactis does not survive in the absence of its mitochondrial genome and that the function ofmgi mutations is to suppress lethality caused by loss of mtDNA. Firstly, we find that loss of a multicopy plasmid bearing amgi allele readily occurs from a wild-type strain with functional mtDNA but is not tolerated in the absence of mtDNA. Secondly, we cloned theK. lactis homologue of theSaccharomyces cerevisiae mitochondrial genome maintenance geneMGM101, and disrupted one of the two copies in a diploid. Following sporulation, we find that segregants containing the disrupted gene form minicolonies containing 6-8000 inviable cells. By contrast, disruption ofMGM101 is not lethal in a haploidmgi strain with a specific mutation in a subunit of the mitochondrial F1-ATPase. These observations suggest that mtDNA inK. lactis encodes a vital function which may reside in one of the three mitochondrially encoded subunits of F0.  相似文献   

2.
Summary Variation in mitochondrial genome organization and expression between male fertile and sterile nuclear-cytoplasmic combinations of sorghum has been examined. Cytoplasmic genotypes were classified into eleven groups on the basis of restriction endonuclease digestion of mitochondrial DNA (mtDNA) and five groups on the basis of mitochondrial translation products. These cytoplasms were further characterized by hybridization of specific gene probes to Southern blots of EcoRI digested mtDNA, and identification of the fragment location of four mitochondrial genes. Variation was observed in the genomic location and copy number of the F1 ATPase -subunit gene, as well as the genomic location and gene product of the cytochrome c oxidase subunit I gene. The effect of nuclear genotype on mitochondrial genome organization, expression and the presence of two linear plasmid-like mtDNA molecules was examined. Our results indicate that nuclear-mitochondrial interactions are required for regulation of mitochondrial gene expression. When a cytoplasm is transferred from its natural to a foreign nuclear background some changes in the products of in organello mitochondrial protein synthesis occur. In a number of cytoplasmic genotypes these changes correlate with the expression of cytoplasmic male sterile phenotype, suggesting a possible molecular basis for this mutation.  相似文献   

3.
Changes in the number of mutant copies of mitochondrial DNA (mtDNA) were studied in the brain and spleen tissues of mice after their X-irradiation at a dose of 5 Gy. For this purpose, heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA (ND3 gene and two D-loop regions) from irradiated and control mice were digested with the CelI nuclease capable of specific mismatch cleavage. Heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA from irrradiated and control mice were digested by the CelI nuclease to a greater degree than heteroduplexes of the PCR products of mtDNA of mice from the control group. This suggests the presence of mutations in mtDNA regions in irradiated mice. Digestion by the CelI nuclease of heteroduplexes obtained via hybridization of the PCR products of mtDNA (ND3 gene and D-loop regions) on day 8 after irradiation is essentially more efficient than digestion of heteroduplexes obtained via hybridization of the PCR products of mtDNA isolated from mouse tissues on days 14 and 28 of the postradiation period. These results indicate a reduction in the number of mtDNA copies with mutations in tissues of irradiated mice by day 28 of the postradiation period. The reduction in the level of mutant mtDNA copies by this term is especially significant in the spleen. The total number of mtDNA copies in the mouse brain and spleen tissues estimated by real-time PCR, relative to the nuclear β-actin gene, is also decreased by 30–50% as compared to the control on days 8 to 28 after irradiation. The results of the study suggest that mutant mtDNA copies are eliminated from tissues of irradiated animals in the postradiation period. This elimination can be regarded either as a result of selective degradation of mitochondria carrying mutant DNA copies or as a result of cell death being continued in tissues of irradiated animals.  相似文献   

4.
5.
The genome ofCampylobacter jejuni was characterized by field inversion gel electrophoresis (FIGE) after digestion with three rare-cutting restriction endonucleases. The restriction enzymesSac II (5-CCGCGG),Sal I (5-GTCGAC), andSma I (5-CCCGGG) were found to produce 13, 5, and 8 fragments respectively from theC. jejuni genome. The fragment sizes ranged from 1.6 kb to 1300 kb, which gaveC. jejuni a genome size of approximately 1900 kb. Furthermore, thegly A and rRNA genes ofC. jejuni were localized to specific fragments by use of Southern analysis, and thegly A gene was shown to be closely linked to one of the three rRNA genes.  相似文献   

6.
Petite-negative yeasts do not form viable respiratory-deficient mutants on treatment with DNA-targeting drugs that readily eliminate the mitochondial DNA (mtDNA) from petite-positive yeasts. However, in the petite-negative yeastKluyveromyces lactis, specific mutations in the nuclear genesMGI2 andMGI5 encoding theα- andγ-subunits of the mitochondrial F1-ATPase, allow mtDNA to be lost. In this study we show that wild-typeK. lactis does not survive in the absence of its mitochondrial genome and that the function ofmgi mutations is to suppress lethality caused by loss of mtDNA. Firstly, we find that loss of a multicopy plasmid bearing amgi allele readily occurs from a wild-type strain with functional mtDNA but is not tolerated in the absence of mtDNA. Secondly, we cloned theK. lactis homologue of theSaccharomyces cerevisiae mitochondrial genome maintenance geneMGM101, and disrupted one of the two copies in a diploid. Following sporulation, we find that segregants containing the disrupted gene form minicolonies containing 6-8000 inviable cells. By contrast, disruption ofMGM101 is not lethal in a haploidmgi strain with a specific mutation in a subunit of the mitochondrial F1-ATPase. These observations suggest that mtDNA inK. lactis encodes a vital function which may reside in one of the three mitochondrially encoded subunits of F0.  相似文献   

7.
In this paper, we describe a protocol to obtain a site-directed mutants in thepsbA gene ofChlamydomonas reinhardtii, which overcomes several drawbacks of previous protocols, and makes it possible to generate a mutant within a month. Since the large size of the gene, and the presence of four large introns has made molecular genetics of thepsbA gene rather unwieldy, we have spliced all of the exons of thepsbA gene by PCR to facilitate genetic manipulation and sequencing of the gene. The resultant construct (plasmid pBA153, with several unique restriction sites introduced at exon boundaries) carried 1.2 and 1.8 kb intact sequences from the 5- and 3-flanking regions, respectively. The plasmid was used to transform a D1-deletion mutant and was found to complement the deletion and restore photosynthetic activity. In addition, a bacterialaadA gene conferring spectinomycin resistance (spe r) was inserted downstream of the intron-freepsbA gene, to give construct pBA155. This allowed selection of mutant strains deficient in photosynthesis by using spectinomycin resistance, and eliminated the possibility of selection for revertant strains which is a consequence of having to use photosynthetic activity as a selection pressure. Finally, pBA155 was used to construct pBA157, in which additional restriction sites were inserted to facilitate cassette mutagenesis for generation of mutations in spans thought to be involved in donor-side interactions. AllpsbA deletion strains transformed with intron-freepsbA-aadA constructs encoding the wild-type D1 sequence, and screened on spectinomycin plates for thespe r phenotype, were able to grow photosynthetically, and all showed identical kinetics for electron transfer from primary (QA) to secondary quinone (QB) in Photosystem II, as assayed by the decay of the high fluorescence yield on oxidation of the reduced primary acceptor (QA ).  相似文献   

8.
Summary Among the fertile sugar beet lines with nuclear sterility maintenance genes, rf, in a homozygous recessive state, sublines capable of reverting spontaneously at a high rate to sterility were identified. Of 24 related fertile sublines studied, 6 were found to spontaneously revert to sterility with a frequency of about 19%. Genetic analysis confirmed the cytoplasmic nature of spontaneously arising sterility. Reversion to sterility in these sublines was accompanied by alterations in the mitochondrial genome structure: loss of the autonomously replicating minicircle c (1.3 kb) and changes in the restriction patterns of high-molecular-weight mitochondrial DNA (mtDNA). Southern hybridixation analysis with cloned minicircle c as a probe revealed no integration of this DNA molecule into the main mitochondrial and nuclear genomes of the revertants. Comparative BamHI and EcoRI restriction analysis of the mtDNA from the sterile revertants and fertile parental subline showed that the spontaneous reversion is accompanied by extensive genomic rearrangement. Southern blot analysis with cloned -subunit of F1-ATPase (atpA) and cytochrome c oxidase subunit II (COX II) genes as probes indicated that the changes in mtDNA accompanying spontaneous reversion to sterility involved these regions. The mitochondrial genomes of the spontaneous revertants and the sterile analogue were shown to be identical.  相似文献   

9.
10.
Summary To study the structure of in vivo mitochondrial DNA recombination intermediates in Saccharomyces cerevisiae, we used a deletion mutant of the wild type mitochondrial genome. The mtDNA of this petite is composed of a direct tandem repetition of an 4,600 pb monomer repeat unit with a unique HhaI restriction enzyme site per repeat. The structure of native mtDNA isolated from log phase cells, and mtDNA crosslinked in vivo with trioxsalen plus UVA irradiation, was studied by electron microscopy. Both populations contained crossed strand Holliday type recombination intermediates. Digestion of both non-crosslinked and crosslinked and mtDNA with the enzyme HhaI released X and H shaped structures composed of two monomers. Electron microscopic analysis revealed that these structures had pairs of equal length arms as required for homologous recombination intermediates and that junctions could occur at points along the entire monomer length. The percentage of recombining monomers in both non-crosslinked and trioxsalen crosslinked mtDNA was calculated by quantitative analysis of all the structures present in an HhaI digest. The relationship between these values and the apparent dispersive replication of mtDNA in density-shift experiments and mtDNA fragility during isolation is discussed.  相似文献   

11.
Sato A  Nakada K  Shitara H  Yonekawa H  Hayashi J 《Genetics》2004,167(4):1855-1861
Mitochondrial disease model mice, mitomice, were created using zygotes of B6mtspr strain mice carrying mitochondrial DNA (mtDNA) from Mus spretus as recipients of exogenous mitochondria carrying wild-type and a deletion mutant mtDNA (DeltamtDNA) of M. musculus domesticus. In these experiments, mtDNAs from different mouse species were used for identification of exo- and endogenous wild-type mtDNAs in the mitomice. Results showed transmission of exogenous DeltamtDNA, but not exogenous wild-type mtDNA, of M. m. domesticus to following generations through the female germ line. Complete elimination of exogenous wild-type mtDNA would be due to stochastic segregation, whereas transmission of exogenous DeltamtDNA would be due to its smaller size leading to a propagational advantage. Tissues in mitomice of the F3 generation carrying exogenous DeltamtDNA showed protection from respiration defects until DeltamtDNA accumulated predominantly. This protection from expression of mitochondrial dysfunction was attained with the help of endogenous wild-type mtDNA of M. spretus, since mitomice did not possess exogenous wild-type mtDNA of M. m. domesticus. These observations provide unambiguous evidence for the presence of interaction between exogenous mitochondria carrying DeltamtDNA and endogenous mitochondria carrying M. spretus wild-type mtDNA.  相似文献   

12.
A study of an invertebrate mitochondrial genome, that of the blowflyPhormia regina, has been initiated to compare its structural and functional relatedness to other metazoan mitochondrial genomes. A restriction map of mitochondrial DNA (mtDNA) isolated from sucrose gradient-purified mitochondria has been established using a combination of single and double restriction endonuclease digestions and hybridizations with isolated mtDNA fragments, revealing a genome size of 17.5 kilobases (kb). A number of mitochondrial genes including those encoding the 12 S and 16 S ribosomal RNA, the cytochromec oxidase I subunit (COI) and an unidentified open reading frame (URF2) have been located on thePhormia mtDNA by Southern blot analysis using as probes both isolated mtDNA fragments and oligonucleotides derived from the sequences of previously characterized genes from rat andDrosophila yakuba mtDNAs. These data indicate that for those regions examined, the mitochondrial genome organization of blowfly mtDNA is the same as that ofDrosophila yakuba, the order being COI-URF2-12 S-16 S. These data also report the presence of an A + T-rich region, located as a 2.5-kb region between the URF2 and the 12 S rRNA genes, and its amplification by the polymerase chain reaction is described.  相似文献   

13.
《Autophagy》2013,9(12):2156-2157
In almost all animals, mitochondrial DNA (mtDNA) is transmitted only from the female, while the paternal mitochondria and mtDNA are thought to be eliminated during early embryogenesis. Autophagy is involved in the elimination of sperm mitochondria and mtDNA in early embryos in Caenorhabditis elegans; however, solid evidence is still lacking in mammals. Recently, we found that despite the fact that some autophagy-related proteins, such as SQSTM1 and LC3 could localize nearby sperm mitochondria before the 2-cell stage, autophagy did not participate in the elimination of sperm mitochondria and mtDNA. Instead, the pre-elimination of sperm mtDNA before fertilization and the restriction of sperm mitochondria in one blastomere before 4-cell stage embryos are the most important mechanisms of maternal mitochondrial inheritance in mice.  相似文献   

14.
One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F1, F2 and BC1F1 populations. Field statistical data revealed that all of the F1 individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F2 population, and 1:1 in the BC1F1 population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw.. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F2 and BC1F1 populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-201000, OPA-041100 and OPY-04900) were cloned and their copy numbers were determined. The results indicated that only OPY-04900 was a single-copy sequence. Then, OPY-04900 was used as a probe to map the Rfg1 gene with a RIL F7 mapping population provided by Henry Nguyen, which was developed from the cross S3×Mo17. Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04900 and umc21 (Bin 6.04–6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F2 population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a single pathogen inoculation and molecular marker analysis.Communicated by H.F. Linskens  相似文献   

15.
Summary Mitochondrial DNAs (mtDNA) from four stable revertant strains generated from high frequency petite forming strains of Saccharomyces cerevisiae have been shown to contain deletions which have eliminated intergenic sequences encompassing ori1, ori2 and ori7. The deleted sequences are dispensable for expression of the respiratory phenotype and mutant strains exhibit the same relative amount of mtDNA per cell as the wild-type (wt) parental strain. These deletion mutants were also used to study the influence of particular intergenic sequences on the transmission of closely linked mitochondrial loci. When the mutant strains were crossed with the parental wt strains, there was a strong bias towards the transmission into the progeny of mitochondrial genomes lacking the intergenic deletions. The deficiency in the transmission of the mutant regions was not a simple function of deletion length and varied between different loci. In crosses between mutant strains which had non-overlapping deletions, wt mtDNA molecules were formed by recombination. The wt recombinants were present at high frequencies among the progeny of such crosses, but recombinants containing both deletions were not detected at all. The results indicate that mitochondrial genomes can be selectively transmitted to progeny and that two particular intergenic regions positively influence transmission. Within these regions other sequences in addition to ori/rep affect transmission.This paper is dedicated to colleagues J. Jana, D. Tasi, I. Bortner, and F. Zavrl  相似文献   

16.
It has previously been shown that presequences of nuclear-encoded chloroplast proteins from the green alga Chlamydomonas reinhardtii contain a region that may form an amphiphilic -helix, a structure characteristic of mitochondrial presequences. We have tested two precursors of chloroplast proteins (the PsaF and PsaK photosystem I subunits) from C. reinhardtii for the ability to be imported into spinach leaf mitochondria in vitro. Both precursors bound to spinach mitochondria. The PsaF protein was converted into a protease-protected form with high efficiency in a membrane potential-dependent manner, indicating that the protein had been imported, whereas the PsaK protein was not protease protected. The protease protection of PsaF was not inhibited by a synthetic peptide derived from the presequence of the N. plumbaginifolia mitochondrial F1 subunit. Furthermore, if the presequence of PsaF was truncated or deleted by in vitro mutagenesis, the protein was still protease-protected with approximately the same efficiency as the full-length precursor. These results indicate that PsaF can be imported by spinach mitochondria in a presequence-independent manner. However, even in the absence of the presequence, this process was membrane potential-dependent. Interestingly, the presequence-truncated PsaF proteins were also protease-protected upon incubation with C. reinhardtii chloroplasts. Our results indicate that the C. reinhardtii chloroplast PsaF protein has peculiar properties and may be imported not only into chloroplasts but also into higher-plant mitochondria. This finding indicates that additional control mechanisms in the cytosol that are independent of the presequence are required to achieve sorting between chloroplasts and mitochondria in vivo.Abbreviations cTP chloroplast transit peptide - mTP mitochondrial targeting peptide - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - pF1(1,25) a synthetic peptide derived from the first 25 residues of the Nicotiana plumbaginifolia mitochondrial ATP synthase F1 subunit - PsaF(2–30) and PsaF(2–61) mutant proteins lacking regions corresponding to residues 2–30 and 2–61 in the PsaF precursor protein, respectively  相似文献   

17.
The LEW.1LM1 inbred rat strain, which has been derived from a (LEW×LEW.1W) F2 hybrid, carries a major histocompatibility (RT1) haplotype which is distinct from that of the LEW strain (RT1 1) in that certainRT1.C region-determined class I antigens are not expressed. Here we show that this phenotypic defect is due to genomic deletion of about 100 kb of theRT1.C region. Certain deleted DNA fragments have been cloned from the wild-type DNA into the EMBL4 vector. Five clones have been characterized and are shown to possess different restriction maps and to each carry a single stretch of class I cross-hybridizing sequences. Probes derived from the non-class I coding part of two clones detect fragments which are present in the wild-type but absent from thelm1 mutant. The type of deletion described here in the rat is discussed in the context ofH-2D/Q deletions in the mouse.  相似文献   

18.
Summary The +1 frameshift mutation, M5631, which is located in the gene (oxi1) for cytochrome c oxidase II (COXII) of the yeast mitochondrial genome, is suppressed spontaneously to a remarkably high extent (20%–30%). The full-length wild-type COXII produced as a result of suppression allows the mutant strain to grow with a leaky phenotype on non-fermentable medium. In order to elucidate the factors and interactions involved in this translational suppression, the strain with the frameshift mutation was mutated by MnCl2 treatment and a large number of mutants showing restriction of the suppression were isolated. Of 20 mutants exhibiting a strong, restricted, respiration-deficient (RD) phenotype, 6 were identified as having mutations in the mitochondrial genome. Furthermore, genetic analyses mapped one mutation to the vicinity of the gene for tRNAPro and two others to a region of the tRNA cluster where two-thirds of all mitochondrial tRNA genes are encoded. The degree of restriction of the spontaneous frameshift suppression was characterized at the translational level by in vivo 35S-labeling of the mitochondrial translational products and immunoblotting. These results showed that in some of these mutant strains the frameshift suppression product is synthesized to the same extent as in the leaky parent strain. It is suggested that more than one +1 frame-shifted product is made as a result of suppression in these strains: one is as functional as the wild-type COXII, the other(s) is (are) non-functional and prevent leaky growth on non-fermentable medium. A possible mechanism for this heterogenous frameshift suppression is discussed.  相似文献   

19.
Summary Among a collection of obligate photoautotrophic (dark-dier,dk) mutants isolated inChlamydomonas reinhardtii, two have been found which are inherited in crosses to wild type in a non-Mendelian, biparental and apparently random fashion. F1 progeny include not only cells which show thedk and wildtype parental phenotypes but also many which possess intermediate phenotypes between wild type anddk. When F1 progeny withdk, intermediate or wild-type phenotype were backcrossed to wild type, thedk phenotype continued to be inherited in a biparental and random fashion. Upon selection, neither mutant formed stable clones producing onlydk progeny, suggesting that the two mutants segregatedk and wild-type progeny somatically and that the homozygousdk condition may be lethal. The biparental transmission of these two non-Mendeliandk mutations resembles the transmission of acriflavin-inducedminute mutations ofChlamydomonas and is distinct from the uniparentally inherited chloroplast mutations of this alga. Both thedk andminute mutations may alter mitochondrial DNA and thereby alter mitochondrial functions.  相似文献   

20.
Summary The molecular size of mitochondrial DNA (mtDNA) molecules and the number of copies of mtDNA per mitochondrion were evaluated from cultured cells of the tobacco BY-2 line derived fromNicotiana tabacum L. cv. Bright Yellow-2. To determine the DNA content per mitochondrion, protoplasts of cultured cells were stained with 4,6-diamidino-2-phenylindole (DAPI), and the intensity of the fluorescence emitted from the mitochondrial nuclei (mt-nuclei) was measured with a video-intensified photon counting microscope system (VIM system). Each mitochondrion except for those undergoing a division contained one mt-nucleus. The most frequently measured size of the DNA in the mitochondria was between 120 and 200 kilobase pairs (kbp) throughout the course of culture of the tobacco cells. Mitochondria containing more than 200 kbp of DNA increased significantly in number 24 h after transfer of the cells into fresh medium but their number fell as the culture continued. Because division of mitochondria began soon after transfer of the cells into fresh medium and continued for 3 days, the change of the DNA content per mitochondrion during the culture must correspond to DNA synthesis of mitochondria in the course of mitochondrial division. By contrast, the analyses of products of digestion by restriction endonucleases indicated that the genome size of the mtDNA was at least 270 kbp. Electron microscopy revealed that mtDNAs were circular molecules and their length ranged from 1 to 35 m, and 60% of them ranged from 7 to 11 rn. These results indicate that the mitochondrial genome in tobacco cells consists of multiple species of mtDNA molecules, and mitochondria do not contain all the mtDNA species. Therefore, mitochondria are heterogeneous in mtDNA composition.Abbreviations DAPI 4, 6-diamidino-2-phenylindole - mtDNA mitochondrial DNA - mt-genome mitochondrial genome - mt-nucleus mitochondrial nucleus - ptDNA proplastid DNA - pt-nucleus proplastid nucleus - VIM system video-intensified photon counting microscope system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号