首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-induced targeting of exchange factors to specific cellular membranes is the predominant mechanism for initiating and compartmentalizing signal transduction by Ras GTPases. The exchange factor RasGRP1 has a C1 domain that binds the lipid diacylglycerol and thus can potentially mediate membrane localization in response to receptors that are coupled to diacylglycerol-generating phospholipase Cs. However, the C1 domain is insufficient for targeting RasGRP1 to the plasma membrane. We found that a basic/hydrophobic cluster of amino acids within the plasma membrane-targeting domain of RasGRP1 is instead responsible for plasma membrane targeting. This basic/hydrophobic cluster binds directly to phospholipid vesicles containing phosphoinositides via electrostatic interactions with polyanionic phosphoinositide headgroups and insertion of a tryptophan into the lipid bilayer. B cell antigen receptor ligation and other stimuli induce plasma membrane targeting of RasGRP1 by activating the phosphoinositide 3-kinase signaling pathway, which generates phosphoinositides within the plasma membrane. Direct detection of phosphoinositides by the basic/hydrophobic cluster of RasGRP1 provides a novel mechanism for coupling and co-compartmentalizing phosphoinositide 3-kinase and Ras signaling and, in coordination with diacylglycerol detection by the C1 domain, gives RasGRP1 the potential to serve as an integrator of converging signals from the phosphoinositide 3-kinase and phospholipase C pathways.  相似文献   

2.
RasGRPs constitute a new group of diacylglycerol-dependent GDP/GTP exchange factors that activate Ras subfamily GTPases. Despite a common structure, Ras-GRPs diverge in their GTPase specificity, subcellular distribution, and downstream biological effects. The more divergent family member is RasGRP2, a Rap1-specific exchange factor with low affinity toward diacylglycerol. The regulation of RasGRP2 during signal transduction has remained elusive up to now. In this report, we show that the subcellular localization of Ras-GRP2 is highly dependent on actin dynamics. Thus, the induction of F-actin by cytoskeletal regulators such as Vav, Vav2, Dbl, and Rac1 leads to the shift of RasGRP2 from the cytosol to membrane ruffles and its co-localization with F-actin. Treatment of cells with cytoskeletal disrupting drugs abolishes this effect, leading to an abnormal localization of RasGRP2 in cytoplasmic clusters of actin. The use of Rac1 effector mutants indicates that the RasGRP2 translocation is linked exclusively to actin polymerization and is independent of other pathways such as p21-activated kinase JNK, or superoxide production. Biochemical experiments demonstrate that the translocation of RasGRP2 to membrane ruffles is mediated by the direct association of this protein with F-actin, a property contained within its 150 first amino acids. Finally, we show that the RasGRP2/F-actin interaction promotes the regionalized activation of Rap1 in juxtamembrane areas of the cell. These results reveal a novel function of the actin cytoskeleton in mediating the spatial activation of Ras subfamily GTPases through the selective recruitment of GDP/GTP exchange factors.  相似文献   

3.
RasGRP1 is a Ras-activating exchange factor that is positively regulated by translocation to membranes. RasGRP1 contains a diacylglycerol-binding C1 domain, and it has been assumed that this domain is entirely responsible for RasGRP1 translocation. We found that the C1 domain can contribute to plasma membrane-targeted translocation of RasGRP1 induced by ligation of the B cell antigen receptor (BCR). However, this reflects cooperativity of the C1 domain with the previously unrecognized Plasma membrane Targeter (PT) domain, which is sufficient and essential for plasma membrane targeting of RasGRP1. The adjacent suppressor of PT (SuPT) domain attenuates the plasma membrane-targeting activity of the PT domain, thus preventing constitutive plasma membrane localization of RasGRP1. By binding to diacylglycerol generated by BCR-coupled phospholipase Cgamma2, the C1 domain counteracts the SuPT domain and enables efficient RasGRP1 translocation to the plasma membrane. In fibroblasts, the PT domain is inactive as a plasma membrane targeter, and the C1 domain specifies constitutive targeting of RasGRP1 to internal membranes where it can be activated and trigger oncogenic transformation. Selective use of the C1, PT, and SuPT domains may contribute to the differential targeting of RasGRP1 to the plasma membrane versus internal membranes, which has been observed in lymphocytes and other cell types.  相似文献   

4.
Ras proteins operate as molecular switches in signal transduction pathways downstream of tyrosine kinases and G-protein-coupled receptors. Ras is switched from the inactive GDP-bound state to the active GTP-bound state by guanine nucleotide exchange factors (GEFs). We report here the cloning and characterization of RasGRP2, a longer alternatively spliced form of the recently cloned RapGEF, CalDAG-GEFI. A unique feature of RasGRP2 is that it is targeted to the plasma membrane by a combination of N-terminal myristoylation and palmitoylation. In vivo, RasGRP2 selectively catalyzes nucleotide exchange on N- and Ki-Ras, but not Ha-Ras. RasGRP2 also catalyzes nucleotide exchange on Rap1, but this RapGEF activity is less potent than that associated with CalDAG-GEFI. The nucleotide exchange activity of RasGRP2 toward N-Ras is stimulated by diacylglycerol and inhibited by calcium. The effects of diacylglycerol and calcium are additive but are not accompanied by any detectable change in the subcellular localization of RasGRP2. In contrast, CalDAG-GEFI is localized predominantly to the cytosol and lacks Ras exchange activity in vivo. However, prolonged exposure to phorbol esters, or growth in serum, results in localization of CalDAG-GEFI to the cell membrane and restoration of Ras exchange activity. Expression of RasGRP2 or CalDAG-GEFI in NIH3T3 cells transfected with wild type N-Ras results in an accelerated growth rate but not morphologic transformation. Thus, under appropriate growth conditions, CalDAG-GEFI and RasGRP2 are dual specificity Ras and Rap exchange factors.  相似文献   

5.
Although a number of genetic defects are commonly associated with acute myeloid leukemia (AML), a large percentage of AML cases are cytogenetically normal. This suggests a functional screen for transforming genes is required to identify genetic mutations that are missed by cytogenetic analyses. We utilized a retrovirus-based cDNA expression system to identify transforming genes expressed in cytogenetically normal AML patients. We identified a new member of the Ras guanyl nucleotide-releasing protein (RasGRP) family of Ras guanine nucleotide exchange factors, designating it RasGRP4. Subsequently, cDNA sequences encoding rodent and human RasGRP4 proteins were deposited in GenBank. RasGRP4 contains the same protein domain structure as other members of the RasGRP family, including a Ras exchange motif, a CDC25 homology domain, a C1/diacyglycerol-binding domain, and putative calcium-binding EF hands. We show that expression of RasGRP4 induces anchorage-independent growth of Rat1 fibroblasts. RasGRP4 is a Ras-specific activator and, interestingly, is highly expressed in peripheral blood leukocytes and myeloid cell lines. Unlike other RasGRP proteins, RasGRP4 is not expressed in the brain or in lymphoid cells. We demonstrated that 32D myeloid cells expressing RasGRP4 have elevated levels of activated Ras compared with control cells, and phorbol 12-myristate 13-acetate (PMA) treatment greatly enhanced Ras activation. PMA induced membrane localization of RasGRP4 and 32D cells expressing RasGRP4 were capable of cytokine-independent proliferation in the presence of PMA. We conclude that RasGRP4 is a member of the RasGRP family of Ras guanine nucleotide exchange factors that may play a role in myeloid cell signaling growth regulation pathways that are responsive to diacylglycerol levels.  相似文献   

6.
Guanine nucleotide exchange factors (GEFs) activate Ras by facilitating its GTP binding. Ras guanyl nucleotide-releasing protein (GRP) was recently identified as a Ras GEF that has a diacylglycerol (DAG)-binding C1 domain. Its exchange factor activity is regulated by local availability of signaling DAG. DAG kinases (DGKs) metabolize DAG by converting it to phosphatidic acid. Because they can attenuate local accumulation of signaling DAG, DGKs may regulate RasGRP activity and, consequently, activation of Ras. DGK zeta, but not other DGKs, completely eliminated Ras activation induced by RasGRP, and DGK activity was required for this mechanism. DGK zeta also coimmunoprecipitated and colocalized with RasGRP, indicating that these proteins associate in a signaling complex. Coimmunoprecipitation of DGK zeta and RasGRP was enhanced in the presence of phorbol esters, which are DAG analogues that cannot be metabolized by DGKs, suggesting that DAG signaling can induce their interaction. Finally, overexpression of kinase-dead DGK zeta in Jurkat cells prolonged Ras activation after ligation of the T cell receptor. Thus, we have identified a novel way to regulate Ras activation: through DGK zeta, which controls local accumulation of DAG that would otherwise activate RasGRP.  相似文献   

7.
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.  相似文献   

8.
Phorbol esters are involved in neurotransmitter release and hormone secretion via activation of protein kinase C (PKC). In addition, it has been recently reported to enhance neurotransmitter release in a PKC-independent manner. However, the exocytotic machinery is not fully clarified. Nowadays members of the RasGRP family are being identified as novel molecules binding to diacylglycerol and calcium, representing a new class of guanine nucleotide exchange factor that activates small GTPases including Ras and Rap1. In the present study, we demonstrated that RasGRP3 is expressed in endocrine tissues and mediates phorbol ester-induced exocytosis. Furthermore, the effects were partially blocked by PKC inhibitor but not mitogen-activated protein kinase kinase inhibitor, although both significantly suppressed the phorbol ester-induced phosphorylation of extracellular signal-regulated kinase 1/2. These results indicate that RasGRP3 is implicated in phorbol ester-induced, PKC-independent exocytosis.  相似文献   

9.
Ras GTPases are on/off switches regulating numerous cellular responses by signaling to various effector molecules. In T lymphocytes, Ras can be activated by two Ras exchange factors, SOS and RasGRP1, which are recruited through the adapters Grb2 and LAT and via the second-messenger diacylglycerol (DAG), respectively. Mitogen-activated protein (MAP) kinase phosphorylation patterns induced by active Ras can vary and contribute to distinct cellular responses. The different consequences of Ras activation by either guanine exchange factor are unknown. DAG also recruits and activates the kinase protein kinase Ctheta (PKCtheta) turning on the Erk MAP kinase pathway, but the biochemical mechanism responsible is unclear. We generated T-cell clones deficient in phorbol myristate acetate (a surrogate for DAG)-induced Ras activation. Analysis of a RasGRP1-deficient Jurkat T-cell clone and RasGRP1 RNA interference in wild-type cells revealed that RasGRP1 is required for optimal, antigen receptor-triggered Ras-Erk activation. RasGRP1 relies on its DAG-binding domain to selectively activate Erk kinases. Activation of Erk correlates with the phosphorylation of threonine residue 184 in RasGRP1. This phosphorylation event requires the activities of novel PKC kinases. Conversely, active PKCtheta depends on RasGRP1 sufficiency to effectively trigger downstream events. Last, DAG-PKC-RasGRP1-driven Ras-Erk activation in T cells is a unique signaling event, not simply compensated for by SOS activity.  相似文献   

10.
Diacylglycerol (DAG) signaling relies on the presence of conserved domain 1 (C1) in its target proteins. Phospholipase C-dependent generation of DAG after T cell receptor (TCR) triggering is essential for the correct immune response onset. Accordingly, two C1-containing proteins expressed in T lymphocytes, Ras guanyl nucleotide-releasing protein1 (RasGRP1) and protein kinase C (PKC), were shown to be fundamental for T-cell activation and proliferation. Although containing the same regulatory domain, they are proposed to relocate to distinct subcellular locations in response to TCR triggering. Here we studied intracellular localization of RasGRP1 and PKC C1 domains in living Jurkat T cells. The results demonstrate that, in the absence of significant primary sequence differences, the C1 domains of these proteins show specific localization within the cell and distinct responses to pharmacological stimulation and TCR triggering. These differences help explain the divergent localization and distinct functional roles of the full-length proteins, which contains them. The properties of these DAG-binding modules allow their characterization as functional markers that discriminate between DAG pools. Finally, we show that by binding to different diacylglycerol forms, overexpression of distinct C1 modules can attenuate DAG-dependent signals originating from the plasma or internal membranes. This is shown by analyzing the contribution of these two lipid pools to PLC-dependent Ras activation in response to TCR triggering.  相似文献   

11.
Dyneins are molecular motors that translocate towards the minus ends of microtubules. In Chlamydomonas flagellar outer arm dynein, light chain 1 (LC1) associates with the nucleotide binding region within the gamma heavy chain motor domain and consists of a central leucine-rich repeat section that folds as a cylindrical right handed spiral formed from six beta-beta-alpha motifs. This central cylinder is flanked by terminal helical subdomains. The C-terminal helical domain juts out from the cylinder and is adjacent to a hydrophobic surface within the repeat region that is proposed to interact with the dynein heavy chain. The position of the C-terminal domain on LC1 and the unexpected structural similarity between LC1 and U2A' from the human spliceosome suggest that this domain interacts with the dynein motor domain.  相似文献   

12.
A W Tai  J Z Chuang  C Bode  U Wolfrum  C H Sung 《Cell》1999,97(7):877-887
The interaction of cytoplasmic dynein with its cargoes is thought to be indirectly mediated by dynactin, a complex that binds to the dynein intermediate chain. However, the roles of other dynein subunits in cargo binding have been unknown. Here we demonstrate that dynein translocates rhodopsin-bearing vesicles along microtubules. This interaction occurs directly between the C-terminal cytoplasmic tail of rhodopsin and Tctex-1, a dynein light chain. C-terminal rhodopsin mutations responsible for retinitis pigmentosa inhibit this interaction. Our results point to an alternative docking mechanism for cytoplasmic dynein, provide novel insights into the role of motor proteins in the polarized transport of post-Golgi vesicles, and shed light on the molecular basis of retinitis pigmentosa.  相似文献   

13.
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy chains, which contain the motor domains, but little is known about how the two intermediate chains interact. There are six intermediate chain isoforms, and it has been hypothesized that different isoforms may regulate specific dynein functions. However, there are little data on the potential combinations of the intermediate chain isoforms in the dynein complexes. We used co-immunoprecipitation analyses to demonstrate that all combinations of homo- and heterodimers of the six intermediate chains are possible. Therefore the formation of dynein complexes with different combinations of isoforms is not limited by interaction between the various intermediate chains. We further sought to identify the domain necessary for the dimerization of the intermediate chains. Analysis of a series of truncation and deletion mutants showed that a 61-amino-acid region is necessary for dimerization of the intermediate chain. This region does not include the N-terminal coiled-coil, the C-terminal WD repeat domain, or the three different binding sites for the Tctex1, LC8, and Roadblock light chains. Analytical gel filtration and covalent cross-linking of purified recombinant polypeptides further demonstrated that the intermediate chains can dimerize in vitro in the absence of the light chains.  相似文献   

14.
Diacylglycerol kinase zeta is a member of the diacylglycerol kinase family of enzymes, which generate phosphatidic acid through diacylglycerol phosphorylation. In addition to the catalytic and cysteine-rich domains found in all diacylglycerol kinases, diacylglycerol kinase zeta has a MARCKS domain as well as a C-terminal region containing four ankyrin repeats and a PDZ-binding motif. Previous reports demonstrated that diacylglycerol kinase zeta interaction with several proteins is an important mechanism for modulating the localization and activity of this enzyme. Here we used a proteomics approach to search for novel diacylglycerol kinase zeta-interacting proteins and identified sorting nexin 27 (SNX27), a recently described member of a protein family involved in intracellular trafficking, which has a PDZ domain in addition to the phox homology domain characteristic of SNX proteins. Co-immunoprecipitation studies and two-hybrid analysis confirmed physical, PDZ-dependent association between SNX27 and diacylglycerol kinase zeta. Because diacylglycerol kinase zeta is expressed abundantly in T lymphocytes, we characterized SNX27 expression and subcellular localization in these cells. SNX27 co-localized with transferrin receptor-positive vesicles, pointing to its participation in T cell endocytic recycling. Expression of deletion mutants revealed that in addition to the phox homology domain the SNX27 PDZ domain contributed to vesicle localization of this protein, suggesting that interaction with diacylglycerol kinase zeta regulates SNX27 localization. Analysis of cells with RNA interference-mediated knockdown of diacylglycerol kinase zeta showed accelerated transferrin receptor exit from the lymphocyte endocytic recycling compartment back to the plasma membrane, further confirming diacylglycerol kinase zeta-dependent control of vesicle trafficking. These data support a previously unreported role for diacylglycerol kinase zeta in the modulation of membrane trafficking, which may also help to define SNX27 function.  相似文献   

15.
16.
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.  相似文献   

17.
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol to produce phosphatidic acid, leading to decreased and increased levels, respectively, of these two lipid messengers that play a central role in T cell activation. Nine DGK isoforms, grouped into five subtypes, are found in higher organisms; all contain a conserved C-terminal domain and at least two cysteine-rich motifs of unknown function. In this study, we have researched in vivo the regulation of DGK alpha, using a transgenic mouse model in which injection of an antigenic peptide activates the majority of peripheral T cells. We demonstrate that DGK alpha, highly expressed in resting T lymphocytes, is subject to complex control at the mRNA and protein levels during in vivo T cell activation. Subcellular fractionation of T lymphocytes shortly after in vivo engagement of the TCR shows rapid translocation of cytosolic DGK alpha to the membrane fraction. At early time points, DGK alpha translocation to the membrane correlates with rapid translocation of Ras guanyl nucleotide-releasing protein (RasGRP), a nucleotide exchange activator for Ras that associates to the membrane through a diacylglycerol-binding domain. To demonstrate a causal relationship between DGK alpha activity and RasGRP relocation to the membrane, we determined RasGRP translocation kinetics in a T cell line transiently transfected with constitutive active and dominant-negative DGK alpha mutants. We show that membrane localization of DGK alpha is associated with a negative regulatory signal for Ras activation by reversing RasGRP translocation. This study is the first demonstration of in vivo regulation of DGK alpha, and provides new insight into the functional role of a member of this family of lipid kinases in the regulation of the immune response.  相似文献   

18.
We identified Ras guanine-releasing protein 3 (RasGRP3) as a guanine exchange factor expressed in blood vessels via an embryonic stem (ES) cell-based gene trap screen to identify novel vascular genes. RasGRP3 is expressed in embryonic blood vessels, down-regulated in mature adult vessels, and reexpressed in newly formed vessels during pregnancy and tumorigenesis. This expression pattern is consistent with an angiogenic function for RasGRP3. Although a loss-of-function mutation in RasGRP3 did not affect viability, RasGRP3 was up-regulated in response to vascular endothelial growth factor (VEGF) stimulation of human umbilical vein endothelial cells, placing RasGRP3 regulation downstream of VEGF signaling. Phorbol esters mimic the second messenger diacylglycerol (DAG) in activating both protein kinase C (PKC) and non-PKC phorbol ester receptors such as RasGRP3. ES cell-derived wild-type blood vessels exposed to phorbol myristate acetate (PMA) underwent extensive aberrant morphogenesis that resulted in the formation of large endothelial sheets rather than properly branched vessels. This response to PMA was completely dependent on the presence of RasGRP3, as mutant vessels were refractory to the treatment. Taken together, these findings show that endothelial RasGRP3 is up-regulated in response to VEGF stimulation and that RasGRP3 functions as an endothelial cell phorbol ester receptor in a pathway whose stimulation perturbs normal angiogenesis. This suggests that RasGRP3 activity may exacerbate vascular complications in diseases characterized by excess DAG, such as diabetes.  相似文献   

19.
The multisubunit microtubule motor, cytoplasmic dynein, targets to various subcellular locations in eukaryotic cells for various functions. The cytoplasmic dynein heavy chain (HC) contains the microtubule binding and ATP binding sites for motor function, whereas the intermediate chain (IC) is implicated in the in vivo targeting of the HC. Concerning any targeting event, it is not known whether the IC has to form a complex with the HC for targeting or whether the IC can target to a site independently of the HC. In the filamentous fungus Aspergillus nidulans, the dynein HC is localized to the ends of microtubules near the hyphal tip. In this study, we demonstrate that our newly identified dynein IC in A. nidulans is also localized to microtubule ends and is required for HC's localization to microtubule ends in living cells. With the combination of two reagents, an HC loss-of function mutant and the green fluorescent protein (GFP)-fused IC that retains its function, we show that the IC's localization to microtubule ends also requires HC, suggesting that cytoplasmic dynein HC-IC complex formation is important for microtubule end targeting. In addition, we show that the HC localization is not apparently altered in the deletion mutant of NUDF, a LIS1-like protein that interacts directly with the ATP-binding domain of the HC. Our study suggests that, although HC-IC association is important for the targeting of dynein to microtubule ends, other essential components, such as NUDF, may interact with the targeted dynein complex to produce full motor activities in vivo.  相似文献   

20.
N Mitin  KL Rossman  CJ Der 《PloS one》2012,7(7):e41876
Spatio-temporal activation of Rho GTPases is essential for their function in a variety of biological processes and is achieved in part by regulating the localization of their activators, the Rho guanine nucleotide exchange factors (RhoGEFs). In this study, we provide the first characterization of the full-length protein encoded by RhoGEF TEM4 and delineate its domain structure, catalytic activity, and subcellular localization. First, we determined that TEM4 can stimulate guanine nucleotide exchange on RhoA and the related RhoB and RhoC isoforms. Second, we determined that TEM4, like other Dbl RhoGEFs, contains a functional pleckstrin homology (PH) domain immediately C-terminal to the catalytic Dbl homology (DH) domain. Third, using immunofluorescence analysis, we showed that TEM4 localizes to the actin cytoskeleton through sequences in the N-terminus of TEM4 independently of the DH/PH domains. Using site-directed mutagenesis and deletion analysis, we identified a minimal region between residues 81 and 135 that binds directly to F-actin and has an ~90-fold higher affinity for ATP-loaded F-actin. Finally, we demonstrated that a single point mutation (R130D) within full-length TEM4 abolishes actin binding and localization of TEM4 to the actin cytoskeleton, as well as dampens the in vivo activity of TEM4 towards RhoC. Taken together, our data demonstrate that TEM4 contains a novel actin binding domain and binding to actin is essential for TEM4 subcellular localization and activity. The unique subcellular localization of TEM4 suggests a spatially-restricted activity and expands the diversity of mechanisms by which RhoGEF function can be regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号