首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Alpha-tocopherol transfer protein (alpha-TTP), a cytosolic protein that specifically binds alpha-tocopherol, is known as a product of the causative gene in patients with ataxia that is associated with vitamin E deficiency. Targeted disruption of the alpha-TTP gene revealed that alpha-tocopherol concentration in the circulation was regulated by alpha-TTP expression levels. Male alpha-TTP(-/-) mice were fertile; however, placentas of pregnant alpha-TTP(-/-) females were severely impaired with marked reduction of labyrinthine trophoblasts, and the embryos died at mid-gestation even when fertilized eggs of alpha-TTP(+/+) mice were transferred into alpha-TTP(-/-) recipients. The use of excess alpha-tocopherol or a synthetic antioxidant (BO-653) dietary supplement by alpha-TTP(-/-) females prevented placental failure and allowed full-term pregnancies. In alpha-TTP(+/+) animals, alpha-TTP gene expression was observed in the uterus, and its level transiently increased after implantation (4.5 days postcoitum). Our results suggest that oxidative stress in the labyrinth region of the placenta is protected by vitamin E during development and that in addition to the hepatic alpha-TTP, which governs plasma alpha-tocopherol level, the uterine alpha-TTP may also play an important role in supplying this vitamin.  相似文献   

2.
Intracellular trafficking of hydrophobic ligands is often mediated by specific binding proteins. The CRAL-TRIO motif is common to several lipid binding proteins including the cellular retinaldehyde binding protein (CRALBP), the alpha-tocopherol transfer protein (alpha-TTP), yeast phosphatidylinositol transfer protein (Sec14p), and supernatant protein factor (SPF). To examine the ligand specificity of these proteins, we measured their affinity toward a variety of hydrophobic ligands using a competitive [(3)H]-RRR-alpha-tocopherol binding assay. Alpha-TTP preferentially bound RRR-alpha-tocopherol over all other tocols assayed, exhibiting a K(d) of 25 nM. Binding affinities of other tocols for alphaTTP closely paralleled their ability to inhibit in vitro intermembrane transfer and their potency in biological assays. All other homologous proteins studied bound alpha-tocopherol but with pronouncedly weaker (> 10-fold) affinities than alpha-TTP. Sec14p demonstrated a K(d) of 373 nM for alpha-tocopherol, similar to that for its native ligand, phosphatidylinositol (381 nM). Human SPF had the highest affinity for phosphatidylinositol (216 nM) and gamma-tocopherol (268 nM) and significantly weaker affinity for alpha-tocopherol (K(d) 615 nM). SPF bound [(3)H]-squalene more weakly (879 nM) than the other ligands. Our data suggest that of all known CRAL-TRIO proteins, only alphaTTP is likely to serve as the physiological mediator of alpha-tocopherol's biological activity. Further, ligand promiscuity observed within this family suggests that caution should be exercised when suggesting protein function(s) from measurements utilizing a single ligand.  相似文献   

3.
Humans and other mammals actively discriminate among the various forms of vitamin E to selectively retain alpha-tocopherol, but the phylogenetic breadth of this trait is unknown. We sought to determine if the fruit fly, Drosophila melanogaster, similarly discriminates and if so by what mechanism. Larvae and adult flies fed diets containing predominantly gamma- and delta-tocopherols were enriched in alpha-tocopherol. Inclusion in the diet of piperonyl butoxide (PBO), an insect cytochrome P450 inhibitor and inhibitor of tocopherol-omega-hydroxylase activity, greatly elevated tissue levels of delta-tocopherol but not alpha-tocopherol. Drosophila microsomes exhibited tocopherol-omega-hydroxylase activity in the order of delta-T > gamma-T > alpha-T, a pattern consistent with the effect of PBO in vivo. To determine if selectivity involved alpha-tocopherol transfer protein (alpha-TTP), adult flies were fed an equimolar mixture of d3-RRR- and d6-all-racemic alpha-tocopherol. Flies exhibited a d3/d6 ratio of 1.03, demonstrating an inability to discriminate on the basis of phytyl tail stereochemistry, a hallmark of alpha-TTP activity. We conclude that Drosophila preferentially accumulates alpha-tocopherol via a mechanism involving cytochrome P450 tocopherol-omega-hydroxylase-mediated catabolism of other tocopherols, but not a mammalian-like alpha-TTP. The selective pressure favoring this trait and its remarkable conservation from insects to humans requires elucidation.  相似文献   

4.
Alpha-tocopherol transfer protein (alpha-TTP) is a liver protein responsible for the selective retention of alpha-tocopherol from dietary vitamin E, which is a mixture of alpha, beta, gamma, and delta-tocopherols and the corresponding tocotrienols. The alpha-TTP-mediated transfer of alpha-tocopherol into nascent VLDL is the major determinant of plasma alpha-tocopherol levels in humans. Mutations in the alpha-TTP gene have been detected in patients suffering from low plasma alpha-tocopherol and ataxia with isolated vitamin E deficiency (AVED). The crystal structure of alpha-TTP reveals two conformations. In its closed tocopherol-charged form, a mobile helical surface segment seals the hydrophobic binding pocket. In the presence of detergents, an open conformation is observed, which probably represents the membrane-bound form. The selectivity of alpha-TTP for RRR-alpha-tocopherol is explained from the van der Waals contacts occurring in the lipid-binding pocket. Mapping the known mutations leading to AVED onto the crystal structure shows that no mutations occur directly in the binding pocket.  相似文献   

5.
Alpha-tocopherol transfer protein (alpha-TTP) was first described to play a major role in maintaining alpha-tocopherol levels in plasma, while alpha-tocopherol was primarily reported to be a factor relevant for reproduction. Expression of alpha-TTP is not only seen in the liver, from where it was first isolated, but also in mouse uterus, depending on its state of pregnancy, stressing the importance of alpha-TTP for embryogenesis and fetal development. The cellular localization of alpha-TTP in mouse uterus is reported here. By immunohistochemistry, alpha-TTP could be localized in the secretory columnar epithelial cells of the pregnant uterus on Days 4.5 and 6.5 postcoitum as well as in the glandular epithelial cells and the inner decidual reaction zone surrounding the implantation site. On Days 8.5 and 10.5 postcoitum (midterm of mouse pregnancy), alpha-TTP could still be detected in the uterine secretory columnar epithelial cells, while in alpha-TTP knockout mice, no immunostaining was visible. It is suggested that alpha-TTP plays a major role in supplying the placenta and consecutively the fetus with alpha-tocopherol throughout pregnancy. We conclude that alpha-tocopherol plays a role in the process of implantation and that alpha-TTP may be necessary for adequate alpha-tocopherol status of the fetus.  相似文献   

6.
The tocopherol transfer protein (TTP) is a member of the CRAL-TRIO family of lipid binding proteins that facilitates vitamin E transfer between membrane vesicles in vitro. In cultured hepatocytes, TTP enhances the secretion of tocopherol to the media; presumably, tocopherol transfer is at the basis of this biological activity. The mechanism underlying ligand transfer by TTP is presently unknown, and available tools for monitoring this activity suffer from complicated assay procedure and poor sensitivity. We report the characterization of a fluorescent vitamin E analogue, (R)-2,5,7,8-tetramethylchroman-2-[9-(7-nitrobenz[1,2,5]oxadiazol-4-ylamino)nonyl]chroman-6-ol (NBD-TOH), as a sensitive and convenient probe for the ligand binding and transfer activities of TTP. Upon binding to TTP, NBD-TOH fluorescence is blue shifted, and its intensity is greatly enhanced. We used these properties to accurately determine the affinity of NBD-TOH to TTP. The analogue binds to TTP reversibly and with high affinity (K(d) = 8.5 +/- 6 nM). We determined the affinity of NBD-TOH to a TTP protein in which lysine 59 is replaced with a tryptophan. When occurring in humans, this heritable mutation causes the ataxia with vitamin E deficiency (AVED) disorder. We find that the affinity of NBD-TOH to this mutant TTP is greatly diminished (K(d) = 71 +/- 19 nM). NBD-TOH functioned as a sensitive fluorophore in fluorescent resonance energy transfer (FRET) experiments. Using the fluorescent lipids TRITC-DHPE or Marina Blue-DHPE as a donor or an acceptor for NBD-TOH fluorescence, we obtained high-resolution kinetic data for tocopherol movement out of lipid bilayers, a key step in the TTP-facilitated ligand transfer reaction.  相似文献   

7.
The liver preferentially secretes alpha-tocopherol into plasma under the control of the hepatic alpha-tocopherol transfer protein (alpha-TTP). alpha-TTP-null mice (Ttpa(-/-) mice) are vitamin E deficient, therefore were used for investigations of in vivo responses to sub-normal tissue alpha-tocopherol concentrations during inflammation. Increased basal oxidative stress in Ttpa(-/-) mice was documented by increased plasma lipid peroxidation, and superoxide production by bone marrow-derived neutrophils stimulated in vitro with phorbol 12-myristate 13-acetate. Lipopolysaccharide (LPS) injected intraperitoneally induced increases in lung and liver HO-1 and iNOS, as well as plasma NO(x) in Ttpa(+/+) mice. LPS induced more modest increases in these markers in Ttpa(-/-) mice, while more marked increases in plasma IL-10 and lung lavage TNF alpha were observed. Taken together, these results demonstrate that alpha-tocopherol is important for proper modulation of inflammatory responses and that sub-optimal alpha-tocopherol concentrations may derange inflammatory-immune responses.  相似文献   

8.
Patients with alpha-tocopherol transfer protein (alpha-TTP) defects experience neurological symptoms characteristic of vitamin E deficiency and depend on continuous high alpha-tocopherol supplements. We investigated the excretion of 2,5,7, 8-tetramethyl-2(2'-carboxyethyl)-6-hydroxychroman (alpha-CEHC), a urinary metabolite of alpha-tocopherol, as a putative marker for the alpha-tocopherol status of alpha-TTP-deficient patients and control subjects. In three patients vitamin E supplementation was stopped for short periods of time, during which plasma alpha-tocopherol concentrations and urinary alpha-CEHC excretion were measured. In the patients, plasma alpha-tocopherol decreased below normal (<5 micromol/l) but alpha-CEHC excretion remained above the range of unsupplemented control subjects (0.118-0.306 mg/day, n = 6). In healthy subjects, however, alpha-CEHC excretion was increased only after surpassing a plasma alpha-tocopherol threshold of 30-40 micromol/l. Such a threshold did not exist in patients. The general mechanism of alpha-tocopherol degradation did not appear to differ between patients and control subjects. The presumed mechanism of omega- and subsequent beta-oxidation was supported by the detection of alpha- CPHC, an alpha -CEHC homolog with a side chain longer by 3 carbon atoms, both in supplemented patients and in control subjects.  相似文献   

9.
In an effort to develop a non-radioactive alternative to the [3H]tiotidine and [125I]iodoaminopotentidine binding assays for the histamine H2-receptor (H2R), primary amines related to aminopotentidine were prepared and coupled with the succinimidyl esters of the bulky fluorescent dyes S0536 and BODIPY 650/665-X. The primary amines exhibited different degrees of antagonistic potency at the human and guinea pig H2R. Surprisingly, one compound (5) coupled to the cyanine dye S0536 acted as potent partial agonist/antagonist at the H2R (KB approximately 50 nM; EC50 approximately 100-150 nM). Compounds coupled to the BODIPY dye exhibited moderately high H2R-affinity, too. Thus, the H2R accommodates bulky fluorophores, probably through interaction with extracellular receptor domains. The compounds presented herein provide a starting point for the optimization of fluorescent H2R ligands with respect to affinity and fluorescence as valuable tools to analyze the molecular mechanisms of H2R activation.  相似文献   

10.
alpha-Tocopherol transfer protein (alpha-TTP) is a cytosolic protein found predominantly in mammalian liver that is proposed to be responsible for the stereoselective uptake of alpha-tocopherol from the diet. Although recombinant alpha-TTP has been reported previously, little detail has been provided about the yields and competency of the recovered protein at binding tocopherols and other ligands. In this work, we report the successful expression and refolding of a recombinant human alpha-TTP. Ligation-independent cloning generated a construct in pET-30 encoding an alpha-TTP fusion protein (pET-30/ttp) containing a six-histidine tag and an S-tag, each cleavable by a separate protease upon expression in Escherichia coli. Overexpression of the protein led to the formation of inclusion bodies that were solubilized in 8 M urea and purified by metal chelate affinity chromatography. Another construct in pET-28b (pET-28b/ttp) provided a soluble protein product after expression that contained a 40-amino-acid N-terminal extension, which can be reduced to 21 amino acids by cleavage with thrombin. The success of different refolding experiments was assessed using a Lipidex gel-based tocopherol binding assay. The best recovery of refolded recombinant alpha-TTP fusion capable of binding alpha-tocopherol was provided by matrix-assisted refolding in the presence of 0.5 M arginine. Cleavage of the fusion protein with Factor Xa successfully generated the full-length wild-type protein with no additional N-terminal amino acids. The resulting purification scheme provides recombinant alpha-TTP in good yield and purity for investigation of both its structure and its binding affinities for different ligands including natural and synthetic tocols.  相似文献   

11.
Ataxia with vitamin E deficiency (AVED), or familial isolated vitamin E deficiency, is a rare autosomal recessive neurodegenerative disease characterized clinically by symptoms with often striking resemblance to those of Friedreich ataxia. We recently have demonstrated that AVED is caused by mutations in the gene for alpha-tocopherol transfer protein (alpha-TTP). We now have identified a total of 13 mutations in 27 families. Four mutations were found in >=2 independent families: 744delA, which is the major mutation in North Africa, and 513insTT, 486delT, and R134X, in families of European origin. Compilation of the clinical records of 43 patients with documented mutation in the alpha-TTP gene revealed differences from Friedreich ataxia: cardiomyopathy was found in only 19% of cases, whereas head titubation was found in 28% of cases and dystonia in an additional 13%. This study represents the largest group of patients and mutations reported for this often misdiagnosed disease and points to the need for an early differential diagnosis with Friedreich ataxia, in order to initiate therapeutic and prophylactic vitamin E supplementation before irreversible damage develops.  相似文献   

12.
BACKGROUND: Particulate surfaces such as beads are routinely used as platforms for molecular assembly for fundamental and practical applications in flow cytometry. Molecular assembly is transduced as the direct analysis of fluorescence, or as a result of fluorescence resonance energy transfer. Binding of fluorescent ligands to beads sometimes alters their emission yield relative to the unbound ligands. Characterizing the physical basis of factors that regulate the fluorescence yield of bound fluorophores (on beads) is a necessary step toward their rational use as mediators of numerous fluorescence based applications. METHODS: We have examined the binding between two biotinylated and fluoresceinated beta-endorphin peptides and commercial streptavidin beads using flow cytometric analysis. We have analyzed the assembly between a specific monoclonal antibody and an endorphin peptide in solution using resonance energy transfer and compared the results on beads in flow cytometry using steady-state and time-resolved fluorescence. RESULTS: We have defined conditions for binding biotinylated and fluoresceinated endorphin peptides to beads. These measurements suggest that the peptide structure can influence both the intensity of fluorescence and the mode of peptide binding on the bead surface. We have defined conditions for binding antibody to the bead using biotinylated protein A. We compared and contrasted the interactions between the fluoresceinated endorphin peptide and the rhodamine- labeled antibody. In solution we measure a K(d) of <38 nM by resonance energy transfer and on beads 22 nM. DISCUSSION: Some issues important to the modular assembly of a fluorescence resonance energy transfer (FRET) based sensing scheme have been resolved. The affinity of peptides used herein is a function of their solubility in water, and the emission intensity of the bound species depends on the separation distance between the fluorescein and the biotin moiety. This is due to the quasi-specific quenching interaction between the fluorescein and a proximal binding pocket of streptavidin. Detection of antibodies in solution and on beads either by FRET or capture of fluorescent ligands by dark antibodies subsequently enables the determination of K(d) values, which indicate agreement between solution and flow cytometric determinations.  相似文献   

13.
The 80th anniversary of vitamin E: beyond its antioxidant properties   总被引:6,自引:0,他引:6  
  相似文献   

14.
In order to elucidate the mobilities of the fluorophores of fluorescent 2- and 16-(9-anthroyloxy)palmitic acids (16-AP and 2-AP, respectively) in lipid bilayer vesicles, the steady-state and time-dependent nuclear Overhauser effects in 1H-NMR spectroscopy, but not the fluorescence depolarization in fluorescence spectroscopy, have been measured. The steady-state nuclear Overhauser effect measurements showed an appreciable magnitude of negative nuclear Overhauser effects between the resonances due to the fluorophores of the two fluorescent probes and lipids. These results definitely mean that in lipid bilayers, the fluorophores (anthroyloxy ring) of the fluorescent probes experience other types of motions with much longer correlation times than those detected by the fluorescence depolarization measurements, since at the correlation time showed by the fluorescent method (1–2 · 10−9 s or less), no such transfer of the negative nuclear Overhauser effects is expected to occur. The correlation times of the fluorophores, as calculated from the cross-relaxation rates of the anthroyl ring protons of 16-AP and 2-AP, were 3.8 · 10−8 and 1.1 · 10−7 s, respectively. These values, respectively, compare favorably with those of the terminal methyl of acyl chains and the choline methyl carbons which were estimated by 13C T2 relaxation times. Thus, it is concluded that the fluorophores of both 16-AP and 2-AP have a slow form of motion which moves with a similar time scale to those of lipids in addition to the faster one that causes fluorescence depolarization.  相似文献   

15.
Alpha-tocopherol plays an important role as a lipid-soluble antioxidant. It is present in all major mammalian cell types and shows tissue-specific distribution. This suggests the presence of specific proteins involved in intracellular distribution or metabolism of alpha-tocopherol. A diminution of tocopherol plasma concentrations contributes to the development of diseases such as vitamin E deficiency (AVED), atherosclerosis, and prostate cancer. Further evidence has been obtained for the existence of sites in cellular metabolism and signal transduction where alpha-tocopherol potentially plays a regulatory role. A signal transduction modulation specific for alpha-tocopherol has been described in several model systems. Using radioactively labeled alpha-tocopherol as tracer, we have isolated a new alpha-tocopherol-associated protein (TAP) from bovine liver. This protein has a molecular mass of 46 kDa and an isoelectric point of 8.1. From its partial amino acid sequence, a human gene has been identified with high homology to the newly described protein. Sequence analysis has established that the new TAP has structural motifs suggesting its belonging to a family of hydrophobic ligand-binding proteins (RALBP, CRALBP, alpha-TTP, SEC 14, PTN 9, RSEC 45). Human TAP has been cloned into Escherichia coli, and its tissue-specific expression has been assessed by Northern blot analysis.  相似文献   

16.
The fluorescent molecules of cellular age pigment granules (lipofuscin) are commonly thought to be end products of membrane lipid autoxidation. Lipofuscin fluorophores of the retinal pigment epithelium (RPE) appear to be derived from photoreceptor outer segment membranes. Experiments were therefore conducted to determine whether the in vitro oxidation of retinal homogenates would generate fluorophores similar to the naturally occurring lipofuscin fluorophores of the RPE. Neural retina and RPE-choroid homogenates from young (2-3 month old) albino rats were subjected to an iron-ascorbate-air pro-oxidant reaction medium, and compared to unoxidized control samples from young age-matched animals as well as senescent (24 month old) rats. In addition, neural retina and RPE-choroid homogenates from 3 month old albino rats were subjected to a 100% oxygen atmosphere to test whether the fluorescent products of autoxidation differ substantially from those generated in the pro-oxidant medium. The chloroform-soluble fluorophores of chloroform-methanol sample extracts were analyzed by corrected fluorescence spectroscopy and thin-layer chromatography (TLC). In vitro pro-oxidation of both the neural retina and the RPE from young rats produced blue-emitting fluorophores which differed from the orange- and yellow-emitting fluorophores extracted from the RPE of senescent rats. Corrected fluorescence spectroscopy of aged tissue extracts revealed vitamin A-related fluorescence (330 nm excitation maximum; 515 nm emission maximum) and a spectrally resolvable age-related fluorescence (420 nm excitation maximum; 600 nm emission maximum). Only the vitamin A-related fluorescence could be measured in the control of young samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of dietary vitamin E on the intermembrane transfer of (3R)-alpha-tocopherol, a spontaneous process accelerated in the presence of an alpha-tocopherol binding protein (alpha TBP), was examined. The transfer activity of this cytosolic liver protein was assayed via in vitro transfer of (3R)-alpha-[3H]tocopherol (alpha[3H]T) from egg lecithin liposomes to human erythrocyte ghosts (EG). Male Fisher 344 rats (1 and 20 months old) were fed diets containing 0, 30, and 500 mg/kg vitamin E (dl-alpha-tocopheryl acetate) for 15 weeks. Liver cytosol fractions were assayed for alpha[3H]T transfer activity (alpha TTA). Among young rats, those fed vitamin E-deficient diets had the highest alpha TTA, 5.02 +/- 3.10 pmole alpha[3H]T/min (mean +/- SD), which was different (P less than 0.05) from the spontaneous transfer rate of 2.10 pmole/min. Neither young rats fed 30 and 500 mg/kg vitamin E diets nor any of the aged rats showed alpha TTA which differed significantly from the spontaneous transfer rate. To examine the relationship between hepatic alpha-tocopherol levels and alpha TTA, alpha-tocopherol concentration per gram of wet liver was assayed by HPLC. A steep positive slope (6.39 +/- 1.46 pmole min-1 nmole g-1) and strong correlation (r = 0.873) between hepatic alpha-tocopherol and alpha TTA were observed (P less than 0.005) among young vitamin E-deficient rats. The data indicates that alpha TTA varies directly with hepatic alpha-tocopherol concentration when total liver vitamin E stores are very low. Thus, alpha TBP-mediated transfer of alpha-tocopherol may be manifest only when vitamin E status is compromised.  相似文献   

18.
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used alpha-tocopherol transfer protein knockout (alpha-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

19.
Summary The usefulness of the formaldehyde (FA) and glyoxylic acid (GA) methods for the fluorescence histochemical demonstration of dopa thioethers has been tested using protein droplet models. Similar fluorescence intensities were recorded from these compounds after either FA or GA treatment. Cysteinyldopa gave a high fluorescence yield similar to that obtained from dopamine and dopa in the FA reaction, whereas glutationedopa showed a lower, although clearly visible fluorescence. Since the FA method seemed to be the most useful one for demonstration of catechol thioethers, the FA-induced fluorophores of these compounds were further characterized by microspectrofluorometry. The spectral characteristics of the thioether fluorophores (excitation maxima at 420 nm and emission maxima at 480–485 nm) distinguish these substances from dopa and other compounds fluorogenic in the Falck-Hillarp method. Dopa thioethers are proposed to form fluorophores with FA in a manner analogous to that of the primary catecholamines i.e. via low-fluorescent tetrahydroisoquinolines, along two different pathways, to strongly fluorescent 3,4-dihydroisoquinolines and 2-methyl-dihydroisoquinolinium compounds. These dihydroisoquinolines are in a pH-dependent tautomeric equilibrium with their quinoidal forms as reflected by a characteristic spectral shift upon acidification. The results of this study provide the guide-lines for the characterization of fluorogenic compounds in pigment-forming cells.  相似文献   

20.
Wu J  Cui G  Zhao M  Cui C  Peng S 《Molecular bioSystems》2007,3(12):855-861
To explore the intercalating mechanism of -carbolines, four novel N-(3-carboxyl-9-benzyl-carboline-1-yl)ethylamino acids [-phenylalanine (6a), -alanine (6b), -isoleucine (6c) and -glycine (6d)] were prepared here. Their in vitro anticancer activities were examined by their anti-proliferation for 5 human carcinoma cell lines. The average IC50s against 5 human carcinoma cell lines are 53.54 microM, 118.77 microM, 147.34 microM and greater than 291.63 microM for 6a, 6b, 6c and 6d, respectively. The DNA intercalating mechanism of 6a-d was approved by the comparison of the parameters and signals of UV, CD and fluorescence spectra of calf thymus DNA (CT DNA) alone and the CT DNA/6a-d system. Using fluorescence titration based kinetic analysis a two-step-course consisting of stacking and intercalating was described and the stacking was considered as the key step to the CT DNA intercalating mechanism of 6a-d. Using fluorescence titration based thermomechanical analysis, the stacking complexes of 6a-d with CT DNA were described to be formed spontaneously and to be stabilized predominantly by their hydrophobic interactions. The intercalation itself goes very fast and only has limited contribution to their anticancer activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号