首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heterotrophic activity of aquatic bacteria was measured by incorporation of 3H-thymidine, uptake of 14C-sodium acetate and mineralization of 14C-acetate. The temperature of water, oxygen content and concentration of chlorophyll a were also measured in the studied lakes. The obtained results of the studied processes in the surface layer and epilimnion were distinguished by negative correlation coefficients. A distinctive feature is the relation between chlorophyll a concentration in the water bodies and heterotrophic activity of bacteria. This indicates a negative dependence between these processes and phytoplankton activity in the photic zone. In contrast a positive relationship between phytoplankton activity and heterotrophic activity of bacteria was found in the metalimnion and hypolimnion of the studied lakes.  相似文献   

2.
Erikson  Rolf 《Hydrobiologia》1998,382(1-3):17-25
Community respiration in tropical Lake Xolotlán, Nicaragua, was assessed seasonally and during diurnal cycles, via oxygen consumption in bottle enclosures. Results were analysed in relation to phytoplankton biomass, mixing depth, depth of photic zone and phytoplankton production. A great part of community respiration was associated with the heterotrophic activity of the phytoplankton biomass or its degradation by bacteria and 80% of the variability in oxygen consumption was explained by the variation of chlorophyll-a. Specific rate of respiration was 1.5 mg O2 mg Chla-1 h-1 during diurnal cycles, which corresponded to less than 5% of the specific rate at optimum depth of production. Still, diurnal water column respiratory losses were always of the same magnitude as the total photosynthetic gains in the photic zone, since the mixing depth exceeded the depth of the photic zone. Total column net growth was zero at a ratio between depth of photic zone and mixing depth of 0.19. Water level variations however altered the mixing depth and affected this ratio and net growth. As a consequence, the phytoplankton biomass either increased or decreased until the ratio was re-established through changes of the photic zone depth, which was governed by the phytoplankton biomass itself through the chlorophyll-a light attenuation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Plankton biomass in size segregated (i.e. 0.45–10 μm, 10–64 μm, 64–165 μm, and > 165 μm) samples was measured using ATP assays for two years in H. H. Moss Reservoir. The presence of variable numbers of microcrustacean zooplankton in the > 165 μ size class introduced significant, and perhaps inaccurate, variance into temporal dynamics of total ATP concentrations. As many as six physiochemical parameters, measured during 1975–76, were required to produce a significant multiple regression against ATP concentrations; a significant correlation between total ATP measured in the photic zone and surface temperature was observed. A large standing crop of nannoplankton (i.e. 0.45–10 μm) existed in the anaerobic and aphotic hypolimnion during summer stratification both years. This suggested that microbial heterotrophy was an especially important primary trophic event in the reservoir. Particulate (POC) and dissolved (DOC) organic carbon were measured in 1976–77. Organic carbon (POC + DOC) regressed significantly against ATP concentration in the 0.45–10 μm size class and microbial biomass (i.e. 0.45–165 μm) averaged 32 per cent of POC. When biomass was monitored over 24-hour periods in the photic zone, significant changes were documented in various size classes, especially nannoplankton; but total microbial biomass remained relatively constant.  相似文献   

4.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

5.
The species composition and phytoplankton biomass, concentrations of chlorophyll “a” (Chl) and nutrients, concurrent hydrophysical conditions were studied in the south part of the White Sea in July 10–15, 2012 during chlorophyll “a” decrease after summer peak. The water column stability varied, the concentration of dissolved silicon in upper mixed layer was closed to the range favorable for diatoms with exception of areas of intensive tide mixing and areas influenced by waters of Severnaya Dvina River. In surface layer the dinoflagellates dominated excepting of areas with intensive tide mixing where diatoms prevailed. Diatoms provided major contribution to biomass in different stations above, in and under pycnocline and in deep waters out of photic zone. Structural analysis has revealed three phytoplankton communities that corresponded to different depths: communities of photic zone, intermediate and deep layers. Extension of layers inhabited by different communities depended on water column stability and on genesis of water masses. Integrated values of phytoplankton biomass and Chl varied from 250 to 1188 mg С/m2, and from 22 to 51 mg/m2, correspondently.  相似文献   

6.
Summary A fed-batch culture of methanol-utilizing microorganism (Corynebacterium sp. XG), a vitamin B 12 producer, was carried out with constant feed of substrate. Experimental results agreed with the theorical model proposed in the literature. Using this feeding system, the final biomass and vitamin B 12 concentration reached 16.3 g/l and 880 g/l respectively after a 53 h incubation period at 30 °C.  相似文献   

7.
Abstract The ciliated protozoan communities in the hypolimnion of a highly produtive pond were investigated over two years. Three physiological groups could be distinguished: stratified water column; (b) anaerobic ciliates with endosymbiotic methanogens; and (c) anaerobes without endosymbiotic methanogens. Both groups of anaerobes were confined to the anoxic zone of the hypolimnion. Community biomass was dominated by microaerobic ciliates which had on average 20 times larger cells than anaerobic ciliates. Abundance and biomass of microaerobic ciliates decreased over the summer, while anaerobic ciliates increased. This reflected a spatial shift in the availability of inorganic nutrients and, as a result, of ciliate food from the epi- and metalimnion to the hypolimnion. The low biomass production of anaerobic ciliates was consistent with the low theoretical growth efficiency of anaerobic metabolism. Ciliate species displayed characteristic spatial and seasonal distribution patterns within the water column which were similar in both years investigated. Spatial and temporal distribution was mainly governed by two factors: (1) the distribution of dissolved oxygen; and (2) the availability of food. Distribution patterns were not related to chemical gradients other than the oxygen gradient, but they were correlated with the distribution of major food sources.  相似文献   

8.
We measured underwater light penetration, phytoplankton biomass and photosynthetic activity during three years (1987–1990) in Lake Xolotlán (L. Managua), Nicaragua. Phytoplankton biomass governed the light climate of the photic zone, but as biomass also was composed of a varying proportion of dead algae, light availability for the potential biomass of actively photosynthesizing algae (170 mg Chl-a.m–2) was reduced. The concentration of chlorophyll-a within the photic zone was thus lower and ranged between 58 and 141 mg Chl-a.m–2. Still, photosynthetic activity was high (2,162 mg 02.m-2.h–1) due to an extremely high specific rate of photosynthesis; light was the only factor that limited growth. As also other conditions in Lake Xolotlán, beside light limitation, met with the requirements of the models that have been used to analyse production and photosynthetic characteristics in tropical lakes there was a striking agreement between observed and predicted values.  相似文献   

9.
AIMS: The propionibacteria are commercially important due to their use in the cheese industry, and there is a growing interest for their probiotic effects. Stimulatory effects of lactic acid bacteria (LAB) on propionic acid bacteria have been observed. This study was designed to examine the possibility of using spent media previously used to grow LAB for the production of biomass and metabolites of Propionibacterium freudenreichii subsp. shermanii. METHODS AND RESULTS: Seventeen MRS and vegetable juice media were prefermented by various LAB and evaluated for their ability to subsequently support the growth of Propionibacterium, using automated spectrophotometry (AS). Growth of Propionibacterium in spent media was strongly affected by the LAB strain used to produce the spent medium. The native MRS medium (not prefermented) yielded the highest optical density values followed by prefermented media by Lactobacillus acidophilus, Bifidobacterium longum and Lactococcus lactis. Prefermented cabbage juice enabled good growth of Propionibacterium. For the production of organic acids and vitamin B12, cells of Propionibacterium were concentrated and immobilized in alginate beads in the aim of accelerating the bioconversions. More propionic acid was obtained in spent media than in native MRS. The concentration of vitamin B12 was higher in media fermented with free cells than those with immobilized cultures; with the free cells, its concentration varied from 900 to 1800 ng ml(-1) of media. CONCLUSIONS: It was demonstrated that spent media could be recycled for the production of Propionibacterium and metabolites, depending on the LAB strain that was previously grown. Media remediation is needed to improve the production of vitamin B12, especially with immobilized cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents an option for recycling of spent media generated by producers of LAB or producers of fermented vegetables. The propionic fermentation may result in three commercial products: biomass, vitamin B12 or organic acids, which may be used as starters, supplements or food preservatives. It is an attractive process from economical and environmental standpoints.  相似文献   

10.
【目的】提高发酵罐的罐压,增加维生素B12的产率。【方法】利用常规代谢通量分析(MFA)方法,对脱氮假单胞菌生产维生素B12的发酵过程进行研究。【结果】发现随着VB12合成速率的加快,磷酸烯醇式丙酮酸(PEP)羧化生成草酰乙酸(OAA)的通量明显加大,以满足维生素B12合成对前体的需求。根据该分析结果,对发酵工艺进行了改进,即在脱氮假单胞菌进入合成维生素B12阶段时,提高发酵罐的罐压,增加发酵液中二氧化碳的溶解度,从而强化了羧化回补途径。维生素B12的产率明显增加,发酵160 h的产物浓度为176 mg/L,比对照批次终浓度147 mg/L高出了19.7%。【结论】通过增大罐压提高了脱氮假单胞菌进入合成维生素B12的产量。  相似文献   

11.
Bacterioplankton biomass and dark fixation of inorganic carbon were measured in the highly humic (water colour up to 550 mg Pt l?1) and acidic lake, Mekkojärvi. Strong thermal and chemical stratification developed in the water column early in spring and led rapidly to anoxia in the hypolimnion, which extended to less than 1.0 m from the surface. In the epilimnion only small bacteria were abundant. In the anoxic zone both the abundance and the mean size of bacteria were considerably higher than in the epilimnion. These differences are thought to be the result of different grazing pressure from zooplankton in the two zones. In late summer a high concentration of bacteriochlorophyll d in the upper hypolimnion indicated a high density of photosynthetic bacteria. Bacterial biomass was similar to that of phytoplankton in the epilimnion, but 23 times higher in the whole water column. In August, dark fixation of inorganic radiocarbon in the anaerobic zone was 51% of the total 14C-incorporation and the contribution of light fixation was only 5.4%. In the polyhumic Mekkojarvi, bacterioplankton was evidently a potentially significant carbon source for higher trophic levels, but bacterioplankton production could not be supported by phytoplankton alone. Allochthonous inputs of dissolved organic matter probably support most of the bacterial production.  相似文献   

12.
Shuji Hino 《Hydrobiologia》1992,230(3):179-192
Variations in physiological state and biomass of the phytoplankton community were examined in three different types of lakes, namely Lake Barato, Lake Akan, and Lake Shikaribetu. When the physiological state of the phytoplankton community was estimated by its adenylate energy charge (AEC), low biomass and low physiological state co-appeared gradually in the metalimnion and hypolimnion during stratification. The physiological state of the phytoplankton as estimated by its AEC value did not always correspond to its biomass, estimated by chlorophyll-a and ATP in these three lakes. A high physiological state of the community was usually observed in the euphotic zone, but the low AEC value observed in the euphotic zone of Lake Barato was not identified in the euphotic zones of the other lakes. Thus, the relationship between the value of AEC, and biomass of phytoplankton is a complex variable, which is further discussed in this paper.  相似文献   

13.
The vertical distributions of bacteria and algae in a steeply stratified, highly humic lake were studied during three 24 h periods in summer. The highest bacterial and algal densities and biomasses were recorded in the anoxic hypolimnion. The bacterial biomass in the hypolimnion was composed mainly of photosynthetic green sulphur bacteria (Chlorobium) which occurred at very low light intensity (< 1.5 μmol m−2 s−1). The numbers and biomasses of bacteria, both in the epilimnion and hypolimnion, were mostly higher at night than during the day, indicating possible asynchrony between the production and loss of bacteria. Because of vertical migration, the diurnal vertical distribution of algae was more variable than that of bacteria. Particularly in July and August, when cryptomonads were abundant, the biomass of algae was much higher in the epilimnion during the day than at night. The flagellated chlorophytes, Chlamydomonas spp. and Scourfieldia cordiformis, stayed mainly in the upper hypolimnion close to the oxic-anoxic boundary zone where only a small proportion of Daphnia longispina was continuously present. Unpalatable Mallomonas chrysophytes with silicified plates and bristles, and small, presumably heterotrophic, flagellates stayed in the oxic epilimnion together with a dense (up to 300 ind l−1) population of D. longispina. The results indicated that, besides the physical and chemical properties of the water column, grazing pressure by Daphnia longispina strongly affected the vertical distribution of microorganisms in this polyhumic lake.  相似文献   

14.
1. Strong vertical gradients in light, water temperature, oxygen, algal concentration and predator encounters during summer in stratified lakes may influence patterns of depth selection in crustacean zooplankton, especially Daphnia species. 2. To test how crustacean depth selection varies among lakes along a gradient of catchment disturbance by recent residential development and land use change, we calculated the weighted mean depth distribution of the biomass of crustaceans by day and night in eight nutrient‐poor boreal lakes. 3. Generally, the greatest biomass of crustaceans was located at the metalimnion or at the lower boundary of the euphotic zone during thermal stratification in July. The crustacean zooplankton avoided warm surface layers and tended to stay in colder deep waters by both day and night. They also remained at greater depths in lakes with a more extensive euphotic zone. 4. There was some evidence of upward nocturnal migrations of large Daphnia and copepods in some lakes, and one case of downward migration in a lake inhabited by chaoborid larvae. 5. Multivariate regression trees (MRT) were used to cluster crustaceans and Daphnia species in homogeneous groups based on lake natural and disturbance factors. For crustaceans, the depth of the euphotic zone, the sampling depth (epilimnion, metalimnion and hypolimnion), time (day or night) of sampling and the biomass of chlorophyll a were the main driving factors. For Daphnia species, the drainage area, the sampling depth, the cleared land surface area within the catchment and the concentration of total dissolved phosphorus were the main factors.  相似文献   

15.
The effect of uroporphyrin, coproporphyrin and their cobalt-containing derivatives on the biosynthesis of vitamin B12 and development of propionibacterium shermanii was studied. The compounds under study stimulated the vitamin synthesis by growing cultures and resting suspensions of these bacteria. Cobalt porphyrins as the sole source of cobalt were used in the vitamin B12 biosynthesis. An addition of cobalt porphyrins to the growing culture of propionic bacteria increased in accumulation of their biomass. Possible mechanisms of porphyrin involvement in the biosynthesis of vitamin B12 and the specific role of cobalt porphyrins in the bacterial activity are discussed.  相似文献   

16.
Summary Two compounds which are both antimetabolites and precursors of vitamin B12, o-phenylendiamine, and 5,6-dimethylbenzimidazole, stimulated the production of vitamin B12 by Propionibacterium freudenreichii at concentrations which were subinhibitory for growth. The stimulatory effect of the compounds depended not only on their concentration, but also on the time of addition. During cultivation, two chromatographically distinguishable fractions with vitamin B12 activity were formed. At concentrations which stimulated production of vitamin B12, only the biosynthesis of true vitamin B12 (cyanocobalamin) took place, while the biosynthesis of the analogue with a higher molecular weight was inhibited.  相似文献   

17.
18.
We examined the effect of light on the heterotrophic activity of the filamentous cyanobacterium Planktothrix rubescens and on its relationship with the accompanying bacteria. In situ leucine uptake by bacteria and cyanobacteria was determined in a subalpine mesotrophic lake, and natural assemblages from the zone of maximal P. rubescens abundances were incubated for 2 days at contrasting light regimes (ambient, 100× increased, dark). Planktothrix rubescens from the photic zone of the lake incorporated substantially more leucine, but some heterotrophic activity was maintained in filaments from the hypolimnion. Exposure of cyanobacteria to increased irradiance or darkness resulted in significantly lower leucine incorporation than at ambient light conditions. Highest abundances and leucine uptake of Betaproteobacteria from the genus Limnohabitans were found in the accompanying microflora at suboptimal irradiance levels for P. rubescens or in dark incubations. Therefore, two Limnohabitans strains (representing different species) were co-cultured with axenic P. rubescens at different light conditions. The abundances and leucine incorporation rates of both strains most strongly increased at elevated irradiance levels, in parallel to a decrease of photosynthetic pigment fluorescence and the fragmentation of cyanobacterial filaments. Our results suggest that Limnohabitans spp. in lakes might profit from the presence of physiologically stressed P. rubescens.  相似文献   

19.
Vitamin B12 (Cyanocobalamin) is one of the vitamins believed to be produced exclusively by microorganisms. Although soil is a rich source of vitamin B12, systematic study as to possible uptake of this vitamin by the plant roots is lacking. This study was undertaken to investigate, under water culture conditions, the uptake of [57Co]-cyanocobalamin by soybean (Glycine max (L.) Merr.). In the range of 10 to 3200 mol L–1, uptake of vitamin B12 was a linear function of the vitamin concentration in the nutrient solution. Depending on the vitamin concentration, 12 to 34% of the total absorbed vitamin was transported to the plant shoots, with proportionally more vitamin B12 transported at higher vitamin concentrations. Aeration of the rooting medium with nitrogen gas significantly increased the total uptake and the percentage of vitamin transported to the shoots. Addition of respiration inhibitor dinitrophenol to the nutrient solution did not affect the total uptake or the partitioning of the vitamin. Root temperature (5–30°C) did not affect the total uptake but significantly altered the partitioning of the vitamin between the roots and the shoots. Foliar-applied vitamin B12 was not translocated to any considerable degree to other plant parts, indicating that phloem transport does not contribute to the distribution of this vitamin within the plant. It is suggested that adding manure (which is rich in this vitamin) to the soil could increase soil and thus plant content of vitamin B12. This could be of importance in raising the intake of this vitamin by people living by choice or necessity on vegetarian diets who are usually threatened by vitamin B12 deficiency.  相似文献   

20.
T. Frisk 《Hydrobiologia》1982,86(1-2):133-139
A simple water quality model for Lake Haukivesi, heavily loaded by pulp and paper mill effluents, has been developed. The main purpose of the model is to predict the concentration of dissolved oxygen in the hypolimnion. The lake is divided into seven sub-basins, and also into epilimnion and hypolimnion. Transfers between sub-basins are calculated using water balance equations. The state variables of the model are dissolved oxygen concentration, biochemical oxygen demand, phytoplankton biomass, and total phosphorus concentration. The effect of temperature on reaction rate coefficients has been taken into account. Temperature is calculated in the model using a second degree polynomial function. The processes affecting hypolimnetic oxygen consumption are BOD decay, decomposition of phytoplankton, benthic oxygen demand, and decomposition of slowly decaying organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号