首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tjong SC  Chen TS  Huang WN  Wu WG 《Biochemistry》2007,46(35):9941-9952
Cobra cardiotoxins (CTXs) are three-fingered polypeptides with positively charged domains that have been shown to bind to anionic ligands of snake venom citrate, glycosaminoglycans, sulfoglycosphingolipid, and nucleotide triphosphate with various biochemical effects including toxin dimerization, cell surface retention, membrane pore formation, cell internalization and blocking of enzymatic activities of kinase and ATPase. The reported anionic binding sites, however, are found to be different among different CTX homologues for potentially different CTX activities. Herein, by NMR studies of the binding of inorganic phosphate, dATP (stable form of ATP), and heparin-derived tetrasaccharide to Naja atra CTX A1, a novel CTX molecule exhibiting in vivo necrotic activity on skeletal muscle, we demonstrate that diverse ligands binding to CTXs could also occur at a single protein site with flexible side chain interactions. The flexibility of such an interaction is also illustrated by the available heparin-CTX A3 complex structures with different heparin chain lengths binding at the same site. Our results provide a likely structural explanation on how the interaction between heparan sufate and proteins depends more on the overall charge cluster organization rather than on their fine structures. We also suggest that the ligand binding site of CTX homologues can be fine-tuned by nonconserved residues near the binding pocket because of their flexible side chain interaction and dimerization ability, even for the rigid CTX molecules tightened by four disulfide bonds.  相似文献   

2.
S C Sue  H C Jarrell  J R Brisson  W G Wu 《Biochemistry》2001,40(43):12782-12794
Recent studies of cobra P-type cardiotoxins (CTXs) have shown that the water-binding loop (loop II) plays a crucial role in toxin binding to biological membranes and in their cytotoxicity. To understand the role of bound water in the loop, the structure and dynamics of the major P-type CTX from Taiwan cobra, CTX A3, were determined by a comprehensive NMR analysis involving (1)H NOESY/ROESY, (13)C[1)H]NOE/T(1) relaxation, and (17)O triple-quantum filtered NMR. A single water molecule was found to be tightly hydrogen bonded to the NH of Met26 with a correlation time (5-7 ns) approaching the isotropic tumbling time (3.8-4.5 ns) of the CTX A3 molecule. Surprisingly, despite the relatively long residence time (ca. 5 ns to 100 micros), the bound water molecule of CTX A3 is located within a dynamic (order parameter S(2) approximately 0.7) and solvent accessible loop. Comparison among several P-type CTXs suggests that proline residues in the consensus sequence of MxAxPxVPV should play an important role in the formation of the water binding loop. It is proposed that the exchange rate of the bound water may play a role in regulating the lipid binding mode of amphiphilic CTX molecules near membrane surfaces.  相似文献   

3.
It has been shown previously that the long chain fragments of heparin bind to the beta-strand cationic belt of the three-finger cobra cardiotoxin (or cytotoxin, CTX) and hence enhance its penetration into phospholipid monolayer under physiological ionic conditions. By taking lysophosphatidylcholine (LPC) micelles as a membrane model, we have shown by (1)H NMR study that the binding of heparin-derived hexasaccharide (Hep-6) to CTX at the beta-strand region can induce conformational changes of CTX near its membrane binding loops and promote the binding activity of CTX toward LPC. The Fourier-transform infrared spectra and NMR nuclear Overhauser effect of Hep-6.CTX and CTX.LPC complex in aqueous buffer also supplemented the aforementioned observation. Thus, the detected conformational change may presumably be the result of structural coupling between the connecting loops and its beta-strands. This is the first documentation of results showing how the association of hydrophilic carbohydrate molecules with amphiphilic proteins can promote hydrophobic protein-lipid interaction via the stabilization of its membrane-bound form. A similar mechanism involving tripartite interactions of heparin, protein, and lipid molecules may be operative near the extracellular matrix of cell membranes.  相似文献   

4.
Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.  相似文献   

5.
Toxin gamma, a cardiotoxin from the venom of the cobra Naja nigricollis, was modified with acetic anhydride, and the derivatives were separated by cation-exchange and reverse-phase chromatography. Nine monoacetylated derivatives were obtained, and those modified at positions 1, 2, 12, 23, and 35 were readily identified by automated sequencing. The overall structure of toxin gamma, composed of three adjacent loops (I, II, and III) rich in beta-sheet, was not affected by monoacetylation as revealed by circular dichroic analysis. Trp-11, Tyr-22, and Tyr-51 fluorescence intensities were not affected by modifications at Lys-12 and Lys-35, whereas Trp-11 fluorescence intensity slightly increased when Lys-1 and Lys-23 were modified. The cytotoxic activity of toxin gamma to FL cells in culture was unchanged after modification at positions 1 and 2, whereas it was 3-fold lower after modification at Lys-23 and Lys-35. The derivative modified at Lys-12 was 10-fold less active than native toxin. Using two isotoxins, we found that substitutions at positions 28, 30, 31, and 57 did not change the cytotoxic potency of toxin gamma. A good correlation between cytotoxicity, lethality, and, to some extent, depolarizing activity on cultured skeletal muscle cells was found. In particular, the derivative modified at Lys-12 always had the lowest potency. Our data show that the site responsible for cytotoxicity, lethality, and depolarizing activity is not diffuse but is well localized on loop I and perhaps at the base of loop II. This site is topographically different from the AcChoR binding site of the structurally similar snake neurotoxins.  相似文献   

6.
Sue SC  Brisson JR  Chang SC  Huang WN  Lee SC  Jarrell HC  Wu W 《Biochemistry》2001,40(35):10436-10446
Glycosaminoglycans (GAGs) have been suggested to be a potential target for cobra cardiotoxin (CTX) with high affinity and specificity via a cationic belt at the concave surface of the polypeptide. The interaction of GAGs, such as high-molecular weight heparin, with CTXs not only can induce aggregation of CTX molecules but also can enhance their penetration into membranes. The binding of short chain heparin, such as a heparin-derived disaccharide [DeltaUA2S(1-->4)-alpha-D-GlcNS6S], to CTX A3 from Taiwan cobra (Naja atra), however, will not induce aggregation and was, therefore, investigated by high-resolution (1)H NMR. A novel heparin binding site on the convex side of the CTX, near the rigid disulfide bond-tightened core region of Cys38, was identified due to the observation of intermolecular NOEs between the protein and carbohydrate. The derived carbohydrate conformation using complete relaxation and conformational exchange matrix analysis (CORCEMA) of NOEs indicated that the glycosidic linkage conformation and the ring conformation of the unsaturated uronic acid in the bound state depended significantly on the charge context of CTX molecules near the binding site. Specifically, comparative binding studies of several heparin disaccharide homologues with two CTX homologues (CTX Tgamma from Naja nigricollis and CTX A3) indicated that the electrostatic interaction of N-sulfate of glucosamine with NH(3)(+)zeta of Lys12 and of the 2-O-sulfate of the unsaturated uronic acid with NH(3)(+)zeta of Lys5 played an important role. These results also suggest a model on how the CTX-heparin interaction may regulate heparin-induced aggregation of the toxin via the second heparin binding site.  相似文献   

7.
Examination of the literature has revealed that regarding the amino acid sequences, cardiotoxins constitute a family of homogeneous compounds. In contrast, cardiotoxins appear heterogeneous as far as their biological and spectroscopic properties are concerned. As a result, comparison between these molecules with a view to establishing structure-activity correlations is complicated. We have therefore reviewed recent works aiming at identifying the functional site of a defined cardiotoxin, ie toxin gamma from the venom of the spitting cobra Naja nigricollis. The biological and structural properties of toxin gamma are first described. In particular, a model depicting the 3-dimensional structure of the toxin studied by NMR spectroscopy is proposed. The toxin polypeptide chain is folded into 3 adjacent loops rich in beta-sheet structure connected to a small globular core containing the 4 disulfide bonds. A number of derivatives chemically modified at a single aromatic or amino group have been prepared. The structure of each derivative was probed by emission fluorescence, circular dichroism and NMR spectroscopy. Also tested was the ability of the derivatives to kill mice, depolarize excitable cell membranes and lyse epithelial cells. Modification of some residues in the first loop, in particular Lys-12 and at the base of the second loop substantially affected biological properties, with no sign of concomitant structural modifications other than local changes. Modifications in other regions much less affected the biological properties of the toxin. A plausible functional site for toxin gamma involving loop I and the base of loop II is presented. It is stressed that the functional site of other cardiotoxins may be different.  相似文献   

8.
Alpha-neurotoxin (alpha-NTX) from the venom of cobra, Naja sputatrix, is a highly lethal post-synaptic toxin that is responsible for the lethality caused by the venom. However, this toxin is found at low levels (3%) in the crude venom. The expression of its gene is determined by a promoter which is 90% similar to the promoter of another three-fingered toxin, cardiotoxin (CTX), which is produced in large amounts (60%) in the same venom. Functional analysis of the NTX-2 gene promoter demonstrated the presence of a silencer element of 24 nucleotides (nt -678 to -655) at its 5(') flanking region. This element has been found to play a major role in the down-regulation of NTX-2 gene expression. A point mutation on this silencer appears to attenuate its repressive property in CTX-2 gene.  相似文献   

9.
Snake venom cardiotoxins have been recently shown to block the enzymatic activity of phospholipid protein kinase and Na+,K+-ATPase. To understand the molecular basis for the inhibitory effects of cardiotoxin on the action of these enzymes, the nucleotide triphosphate binding ability of cardiotoxin analogue II (CTX II) from the Taiwan cobra (Naja naja atra) venom is investigated using a variety of spectroscopic techniques such as fluorescence, circular dichroism, and two-dimensional NMR. CTX II is found to bind to all the four nucleotide triphosphates (ATP, UTP, GTP, and CTP) with similar affinity. Detailed studies of the binding of dATP to CTX II indicated that the toxin molecule is significantly stabilized in the presence of the nucleotide. Molecular modeling, based on the NOEs observed for the dATP.CTX II complex, reveals that dATP binds to the CTX II molecule at the groove enclosed between the N- and C-terminal ends of the toxin molecule. Based on the results obtained in the present study, a molecular mechanism to account for the inhibition of the enzymatic activity of the phospholipid-sensitive protein kinase and Na+,K+-ATPase is also proposed.  相似文献   

10.
The aim of the present study is to understand the structural features responsible for the lethal activity of snake venom cardiotoxins. Comparison of the lethal potency of the five cardiotoxin isoforms isolated from the venom of Taiwan cobra (Naja naja atra) reveals that the lethal potency of CTX I and CTX V are about twice of that exhibited by CTX II, CTX III, and CTX IV. In the present study, the solution structure of CTX V has been determined at high resolution using multidimensional proton NMR spectroscopy and dynamical simulated annealing techniques. Comparison of the high resolution solution structures of CTX V with that of CTX IV reveals that the secondary structural elements in both the toxin isoforms consist of a triple and double-stranded antiparallel beta-sheet domains. Critical examination of the three-dimensional structure of CTX V shows that the residues at the tip of Loop III form a distinct "finger-shaped" projection comprising of nonpolar residues. The occurrence of the nonpolar "finger-shaped" projection leads to the formation of a prominent cleft between the residues located at the tip of Loops II and III. Interestingly, the occurrence of a backbone hydrogen bonding (Val27CO to Leu48NH) in CTX IV is found to distort the "finger-shaped" projection and consequently diminish the cleft formation at the tip of Loops II and III. Comparison of the solution structures and lethal potencies of other cardiotoxin isoforms isolated from the Taiwan cobra (Naja naja atra) venom shows that a strong correlation exists between the lethal potency and occurrence of the nonpolar "finger-shaped" projection at the tip of Loop III. Critical analysis of the structures of the various CTX isoforms from the Taiwan cobra suggest that the degree of exposure of the cationic charge (to the solvent) contributed by the invariant lysine residue at position 44 on the convex side of the CTX molecules could be another crucial factor governing their lethal potency.  相似文献   

11.
alpha-Cobratoxin, a long chain curaremimetic toxin from Naja kaouthia venom, was produced recombinantly (ralpha-Cbtx) from Escherichia coli. It was indistinguishable from the snake toxin. Mutations at 8 of the 29 explored toxin positions resulted in affinity decreases for Torpedo receptor with DeltaDeltaG higher than 1.1 kcal/mol. These are R33E > K49E > D27R > K23E > F29A >/= W25A > R36A >/= F65A. These positions cover a homogeneous surface of approximately 880 A(2) and mostly belong to the second toxin loop, except Lys-49 and Phe-65 which are, respectively, on the third loop and C-terminal tail. The mutations K23E and K49E, and perhaps R33E, induced discriminative interactions at the two toxin-binding sites. When compared with the short toxin erabutoxin a (Ea), a number of structurally equivalent residues are commonly implicated in binding to muscular-type nicotinic acetylcholine receptor. These are Lys-23/Lys-27, Asp-27/Asp-31, Arg-33/Arg-33, Lys-49/Lys-47, and to a lesser and variable extent Trp-25/Trp-29 and Phe-29/Phe-32. In addition, however, the short and long toxins display three major differences. First, Asp-38 is important in Ea in contrast to the homologous Glu-38 in alpha-Cbtx. Second, all of the first loop is insensitive to mutation in alpha-Cbtx, whereas its tip is functionally critical in Ea. Third, the C-terminal tail may be specifically critical in alpha-Cbtx. Therefore, the functional sites of long and short curaremimetic toxins are not identical, but they share common features and marked differences that might reflect an evolutionary pressure associated with a great diversity of prey receptors.  相似文献   

12.
Severe tissue necrosis with a retarded wound healing process is a major symptom of a cobra snakebite. Cardiotoxins (CTXs) are major components of cobra venoms that belong to the Ly-6 protein family and are implicated in tissue damage. The interaction of the major CTX from Taiwan cobra, i.e. CTX A3, with sulfatides in the cell membrane has recently been shown to induce pore formation and cell internalization and to be responsible for cytotoxicity in cardiomyocytes (Wang, C.-H., Liu, J.-H., Lee, S.-C., Hsiao, C.-D., and Wu, W.-g. (2006) J. Biol. Chem. 281, 656-667). We show here that one of the non-cytotoxic CTXs, i.e. CTX A5 or cardiotoxin-like basic polypeptide, from Taiwan cobra specifically bound to alpha(v)beta3 integrin and inhibited bone resorption activity. We found that both membrane-bound and recombinant soluble alpha(v)beta3 integrins bound specifically to CTX A5 in a dose-dependent manner. Surface plasmon resonance analysis showed that human soluble alpha(v)beta3 bound to CTX A5 with an apparent affinity of approximately 0.3 microM. Calf pulmonary artery endothelial cells, which constitutively express alpha(v)beta3, showed a CTX A5 binding profile similar to that of membrane-bound and soluble alpha(v)beta3 integrins, suggesting that endothelial cells are a potential target for CTX action. We tested whether CTX A5 inhibits osteoclast differentiation and bone resorption, a process known to be involved in alpha(v)beta3 binding and inhibited by RGD-containing peptides. We demonstrate that CTX A5 inhibited both activities at a micromolar range by binding to murine alpha(v)beta3 integrin in osteoclasts and that CTX A5 co-localized with beta3 integrin. Finally, after comparing the integrin binding affinity among CTX homologs, we propose that the amino acid residues near the two loops of CTX A5 are involved in integrin binding. These results identify CTX A5 as a non-RGD integrin-binding protein with therapeutic potential as an integrin antagonist.  相似文献   

13.
Chen TS  Chung FY  Tjong SC  Goh KS  Huang WN  Chien KY  Wu PL  Lin HC  Chen CJ  Wu WG 《Biochemistry》2005,44(20):7414-7426
Natural homologues of cobra cardiotoxins (CTXs) were classified into two structural subclasses of group I and II based on the amino acid sequence and circular dichroism analysis, but the exact differences in their three-dimensional structures and biological significance remain elusive. We show by circular dichroism, NMR spectroscopic, and X-ray crystallographic analyses of a newly purified group I CTX A6 from eastern Taiwan cobra (Naja atra) venoms that its loop I conformation adopts a type VIa turn with a cis peptide bond located between two proline residues of PPxY. A similar "banana-twisted" conformation can be observed in other group I CTXs and also in cyclolinopeptide A and its analogues. By binding to the membrane environment, group I CTX undergoes a conformational change to adopt a more extended hydrophobic domain with beta-sheet twisting closer to the one adopted by group II CTX. This result resolves a discrepancy in the CTX structural difference reported previously between solution as well as crystal state and shows that, in addition to the hydrophobicity, the exact loop I conformation also plays an important role in CTX-membrane interaction. Potential protein targets of group I CTXs after cell internalization are also discussed on the basis of the determined loop I conformation.  相似文献   

14.
The hypothesis that local conformational differences of snake venom cardiotoxins (cytotoxins, CTs) may play a significant role in their interaction with membrane was tested by molecular modeling of the behavior of the CT A5 from the venom of Naja atra in water and at the water-membrane interface. Two models of the CT A5 spatial structure are known: the first was obtained by X-ray analysis and the second, by NMR studies in solution. A molecular dynamics (MD) analysis demonstrated that loop II of the toxin has a fixed omega-like shape in water, which does not depend on its initial structure. Interaction of the experimentally derived (X-ray and NMR) conformations and MD-simulated conformations of CT A5 with the lipid bilayer was studied by the Monte Carlo method using the previously developed model of the implicit membrane. The following was found: (1) Unlike the previously studied CT2 from the venom of cobra Naja oxiana, CT A5 has only loops I and II bound to the membrane, with the involvement of a lesser number of hydrophobic residues. (2) A long hydrophobic area is formed on the surface of CT A5 due to the omega-like shape of loop II and the arrangement of loop I in proximity to loop II. This hydrophobic area favors the toxin embedding into the lipid bilayer. (3) The toxin retains its conformation upon interaction with the membrane. (4). The CT A5 molecule has close values of the potential energy in the membrane and in an aqueous environment, which suggests a dynamic character of the binding. The results of the molecular modeling indicate a definite configuration of loops I and II and, consequently, a specific character of distribution of polar and apolar properties on the toxin surface, which turns out to be the most energetically favorable. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.  相似文献   

15.
The cationic groups of arginine and lysine residues inα-neurotoxin, Toxin a, isolated from king cobra (Ophiophagus hannah) venom were subjected to modification with trinitrobenzene sulfonate (TNBS) andp-hydroxyphenylglyoxal (HPG), respectively. The trinitrophenylated (TNP) derivatives of Toxin a at Lys-10, 56, or 71 showed approximately 25% residual lethality, and modifications on Lys-10 and 56 or Lys-10 and 50 resulted in a decrease of lethality by 84% and 86%, respectively. Modifications on Arg-34, 37, and 70 and Arg-34, 37, and 72 in Toxin a caused a decrease in lethality by 92% and 93%, respectively, and it almost completely lost its lethality and binding activity to nicotinic acetylcholine receptor (nAChR) when all four arginine residues were modified. These results indicate that in addition to the cationic residues on loop II (Arg-34, 37), loop III (Lys-50, 56), and the C-terminal tail (Arg-70, 72; Lys-71), Lys-10 on loop I is also related to the neurotoxicity of Toxin a.  相似文献   

16.
The cationic groups of arginine and lysine residues in-neurotoxin, Toxin a, isolated from king cobra (Ophiophagus hannah) venom were subjected to modification with trinitrobenzene sulfonate (TNBS) andp-hydroxyphenylglyoxal (HPG), respectively. The trinitrophenylated (TNP) derivatives of Toxin a at Lys-10, 56, or 71 showed approximately 25% residual lethality, and modifications on Lys-10 and 56 or Lys-10 and 50 resulted in a decrease of lethality by 84% and 86%, respectively. Modifications on Arg-34, 37, and 70 and Arg-34, 37, and 72 in Toxin a caused a decrease in lethality by 92% and 93%, respectively, and it almost completely lost its lethality and binding activity to nicotinic acetylcholine receptor (nAChR) when all four arginine residues were modified. These results indicate that in addition to the cationic residues on loop II (Arg-34, 37), loop III (Lys-50, 56), and the C-terminal tail (Arg-70, 72; Lys-71), Lys-10 on loop I is also related to the neurotoxicity of Toxin a.  相似文献   

17.
A class of high-affinity binding sites that preferentially bind heparin/heparan sulfate have been identified on the external surfaces of mouse uterine epithelial cells cultured in vitro. [3H]Heparin binding to these surfaces was time-dependent, saturable, and was blocked specifically by the inclusion of unlabeled heparin or endogenous heparan sulfate in the incubation medium. A variety of other glycosaminoglycans did not compete for these binding sites. The presence of sulfate on heparin influenced, but was not essential for, recognition of the polysaccharide by the cell surface binding sites. [3H]-Heparin bound to the cell surface was displaceable by unlabeled heparin, but not chondroitin sulfate. Treatment of intact cells on ice with trypsin markedly reduced [3H]heparin binding, indicating that a large fraction of the surface binding sites were associated with proteins. Scatchard analyses revealed a class of externally disposed binding sites for heparin/heparan sulfate exhibiting an apparent Kd of approximately 50 nM and present at a level of 1.3 x 10(6) sites per cell. Approximately 9-14% of the binding sites were detectable at the apical surface of cells cultured under polarized conditions in vitro. Detachment of cells from the substratum with EDTA stimulated [3H]heparin binding to cell surfaces. These observations suggested that most of the binding sites were basally distributed and were not primarily associated with the extracellular matrix. Collectively, these observations indicate that specific interactions with heparin/heparan sulfate containing molecules can take place at both the apical and basal cell surfaces of uterine epithelial cells. This may have important consequences with regard to embryo-uterine and epithelial-basal lamina interactions.  相似文献   

18.
After treatment of neurotoxin II, a component part of the venom of the Middle Asian cobra Naja naja oxiana, with acetoxysuccinimide all five possible epsilon-acetylated-lysyl derivatives were obtained and the position of the label was established. Trifluoroacetylation of both the derivatives and the parent toxin yielded, respectively, the five acetyl-penta(trifluoroacetyl)-neurotoxins II and the hexa(trifluoroacetyl)-neurotoxin II, which were studied by circular dichroism (CD), 1H and 19F nuclear magnetic resonance (NMR) spectroscopy. The availability of this series of compounds made possible assignment of all six fluorine signals (from the N-terminal and the five epsilon-amino groups) in the hexa(trifluoroacetyl)-neurotoxin II NMR spectra and disclosure of the proximity of the Lys-26 and Lys-46 trifluoroacetyl groups. The pH dependence of the 19F NMR signals was determined and the pK values of the groups affecting the signal chemical shifts were calculated by a computer iterative program. In order to ascertain the relative accessibility of the lysyl side chains, the change in halfwidths of the hexatrifluoroacetylated neurotoxin II 19F signals, with addition of varying amounts of an iminoxyl spin probe, was determined. The data obtained are compared with the X-ray data on sea snake neurotoxins and the significance of the side chain interactions observed in solution is discussed.  相似文献   

19.
Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.  相似文献   

20.
The hypothesis that local conformational differences of the snake venom cardiotoxins (cytotoxins, CT) may play a significant role in their interaction with membrane was tested by molecular modeling of the behavior of the CT A5 from the venom of Naja atra in water and at the water–membrane interface. Two models of the CT A5 spatial structure are known: the first was obtained by X-ray analysis and the second, by NMR studies in solution. A molecular dynamics (MD) analysis demonstrated that loop II of the toxin has a fixed -like shape in water, which does not depend on its initial structure. An interaction of the experimentally derived (X-ray and NMR) conformations and MD simulated conformations of CT A5 with the lipid bilayer was studied by the Monte Carlo method using the previously developed model of the implicit membrane. It is found that: (1) unlike the previously studied CT2 from the venom of cobra Naja oxiana, CT A5 has only loops I and II bound to the membrane with the involvement of a lesser number of hydrophobic residues. (2) A long hydrophobic area is formed on the surface of CT A5 due to the -like shape of loop II and the arrangement of loop I in proximity to loop II. This hydrophobic area favors the toxin embedding into the lipid bilayer. (3) The toxin retains its conformation upon interaction with the membrane. (4) The CT A5 molecule has close values of the potential energy in the membrane and in aqueous environment, which suggests dynamic character of the binding. The results of the molecular modeling indicate a definite configuration of loops I and II and, consequently, a specific character of distribution of polar and apolar properties on the toxin surface, which turns out to be the most energetically favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号