首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
To enhance preservation of the extracellular materials, we have fixed hamster and mouse oocyte cumulus complexes (OCC) for transmission electron microscopy in the presence of ruthenium red. Ruthenium red had four effects on the extracellular components of the freshly ovulated hamster OCC. It interacted with the surface of cumulus and corona radiata cells; it stabilized the extracellular matrix (ECM) that was comprised of granules and filaments; it produced moderate electron density and good structural definition in the zona pellucida, and it revealed occasional smalls granular depsits on the oolemma. The ECM observed between cells of the cumulus and corona radiata layers extended into the outer one third of the zona pellucida. The granule and filament matrix was removed from the cumulus layer, corona radiata, and pores of the zona pellucida by brief treatment with hyaluronidase. The extracellular components of oviducal OCC from hamsters and mice appeared similar to OCC removed from follicles of the hamster shortly before ovulation. However, oviducal OCC did show increased aggregation of granules in the ECM. In most cases where females had been mated and oocytes were fertilized, the extracellular components appeared similar to those seen in fresh OCC. Exceptions were noted in some oocytes that lacked cumulus and corona radiata cells. In these instances, the zona pellucida generally lacked the granule/filament matrix. After fertilization numerous small electrondense granules were noted in the perivitelline space. These were presumed to originate in the cortical granules and formed a new investing layer around the zygote. Our data suggest that the OCC becomes more difficult for a sperm to penetrate as it approaches the oocyte. The significance of these results is discussed with respect to sperm traffic in the OCC and the cortical reaction.  相似文献   

2.
Summary A study has been made of the histochemical composition of the murine cumulus—oocyte complex and zona pellucida following treatment of immature females with exogenous gonadotrophins. Selected developmental stages were studied in detail, namely (i) the ovulated and unfertilized egg, (ii) the fertilized oocyte and (iii) the preimplantation embryo. In addition, the histochemical features observed in normal fertilized embryos have been compared with those of haploid and diploid parthenogenetic embryos at comparable stages following activation. Shortly after fertilization, glycosaminoglycans, which form a major component of the extracellular matrix surrounding the cumulus cells, become incorporated into the zona pellucida of the fertilized egg. In oocytes with few or no attendant cumulus cells, there appeared to be a diminished uptake of glycosaminoglycans and a reduced intensity of the zona staining reaction to Alcian Blue. In these oocytes, uptake of glycosaminoglycans appeared to be from the secretions lining the oviduct. There was little incorporation of the glycosaminoglycans from the extra-cellular matrix of the surrounding cumulus cells into the zona pellucida in unfertilized or parthenogenetic eggs despite the activation stimulus. After fertilization or activation, the zona pellucida became increasingly PAS-positive. Enzymic studies clearly indicate that the composition of the zona pellucida of the early embryo is histochemically different from the zona that surrounds the oocyte in the preovulatory follicle. These findings are discussed in relation to the decreased viability of embryos from oocytes which have been ovulated.The death of Mrs Carol Grainge is sadly recorded.  相似文献   

3.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

4.
Maturation-associated changes in the rat zona pellucida   总被引:1,自引:0,他引:1  
Rat follicular oocytes, arrested at prophase I, cannot be fertilized in vitro. This capacity is acquired following resumption of meiosis and a series of changes involving both the oocyte and the cumulus cells surrounding it. Oocytes exposed to sperm at different hours before ovulation show a gradual increase in the permeability of their zona pellucida (ZP). Our study examined whether the ZP, in response to the physiological stimulus for maturation and concomitant with the other oocyte--cumulus components, undergoes maturational changes. Two ZP characteristics were assessed, sensitivity to proteolysis and sperm binding. ZP surrounding oocytes and eggs were collected from five sources: 1) germinal vesicle (GV)-intact oocytes, 2) preovulatory eggs, 3) ovulated eggs isolated from oviducts of immature females, 4) fertilized eggs, 5) ovulated eggs isolated from oviducts of mature females. All ZP surrounding oocytes/eggs from groups 1-5 were dissolved by trypsin. When solubility by pronase and alpha-chymotrypsin was examined, a large variation between groups was found. All ZP from group 2 were dissolved by 0.001% pronase, compared to 0% solubility in group 4. Only 10% of the ZP surrounding GV-intact oocytes (group 1) were dissolved by this enzyme, compared to 82% in group 3. Solubility in 0.01% alpha-chymotrypsin showed a similar pattern. Capacitated sperm were incubated with eggs from groups 1 and 3. The number of sperm binding to ZP in group 3 was repeatedly higher than that in group 1. In both tests it was found that the ZP surrounding the mature eggs differ in their characteristics from ZP of GV-intact oocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Freshly ovulated eggs are each surrounded by a compact cumulus oophorus. The overall diameter of the normal egg (including the zona pellucida) is about 100 μm. Cumulus cells, particularly those near the egg, are arranged redially in a viscous noncellular matrix. The spermatozoon is about 250 μm in length. The head a large acrosome, changes in which can be readily examined with the light (phase- contrast) microsope. When exposed to physiological salt solutions, testicular spermatozoa either were motionless or flexed the posterior half of their tails slowly. Spermatozoa from the caput epididymis were highly motile, flexing the entire tail. A few of them moved progressively. Mature spermatozoa from the vas deferens were highly motile and moved either straightforward or in a circle. They vibrated their tails stiffly without flexing them. In normally mated females, fertilization began sometime between 2 and 3 h after ovulation and was completed within the next 4 to 5 h. Spermatozoa swimming in the ampullary fluid or within the cumulus oophorus about the time of fertilization flexed the anterior half (which roughly corresponds to the midpieac region) of their tails. This peculiar movement may be homologous to the so-called “hyperactivation” of spermatozoa as reported in several other mammalian species. Actively motile spermatozoa within the cumulus or no the zona pellucida had either modified (“collapsed”) or no acrosomal caps. The sperm head usually passed verticually or nearly through the zona, but the path was oblique in some instances. In 54% of the recently fertilized eggs examined, the entire length of the sperm tail was within the perivitelline space; in the other 46% of the eggs varying lenghts of the tail remined the perivitelline space, the tails were extruded from the vitellus of many eggs even before the eggs began their first cleavage. When unfertilized eggs in the cumulus oophorus were inseminated with vas deferens spermatozoa in a modified Tyrode's solution (m-TALP), about 80% of them were ferrtilized by 4–6 h after insemination. The vast majority were monospermic. When eggs were freed from the cumulus prior to insemination, none were fertilized, suggesting that the cumulus cells or their matrix assisted capacitation and/or the acrosome reaction of the spermatozoa under the in vitro conditions employed. No eggs were fertilized by the testicular or caput epididymal spermatozoa regardless of the presence or absence of cumulus oophorus around the eggs at the time of insemination.  相似文献   

6.
Reasoning from the premises that 1) the sperm:egg ratio at the time of activation of the secondary oocyte in mammals is close to unity under conditions of spontaneous mating, 2) a majority of eggs within the cumulus oophorus of a polytocous species is fertilized in a reasonably short interval of time, and 3) spermatozoa would find it difficult to reverse their approach to the zona pellucida, it is proposed that molecular gradients exist to divert spermatozoa penetrating the cumulus mass away from eggs already activated and towards eggs as yet unfertilised. Possible sources of such molecular cues are considered, as is the event that triggers their release. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Summary In hydrozoans the sperm will fuse with the egg only at the site of polar body formation. The primary oocyte and maturing oocytes which have produced the first polar body cannot be fertilized even though maturing oocytes which have produced the first polar body attract sperm. These eggs do not acquire the ability to be fertilized until after second polar body formation. If either first or second polar body formation is inhibited or if first and second polar body formation do not take place in close proximity to each other, the fertilization site is not set up. Under normal circumstances the site of polar body formation takes place at the region on the maturing oocyte surface nearest the site where the germinal vesicle resided in the primary oocyte. When maturing oocytes are centrifuged prior to polar body formation, the site of polar body formation is frequently shifted so that it does not correspond to the site where it would be given off under normal circumstances. Under these conditions the shifted site of polar body formation is the only site where the egg can be fertilized, indicating that the fertilization site is selected during oocyte maturation.Oocyte maturation in these hydrozoans is mediated by a hormone released by the somatic cells of gonophores as a consequence of bringing dark adapted gonophores into the light. The hormone acts directly on the oocyte to induce maturation. The oocyte only has to be exposed to the hormone for the first few minutes of the maturation process in order to complete the process of maturation.Dedicated to Professor N.H. Verdonk of the Rijksuniversiteit Utrecht on his 65th birthday  相似文献   

8.
Summary The fine structure of the human cumulus oophorus has been reviewed on the basis of scanning and transmission electron microscopic observations as well as of immunofluorescence data. Tissues sampled from preovulatory ovarian follicles and cumulus-enclosed oocytes and fertilized eggs (collected from the oviduct or obtained during in vitro fertilization procedures) have been evaluated from a microtopographic and morphodynamic point of view in order to better clarify the possible role of this population of cells. In particular, the following aspects have been studied and discussed: the presence of multiple close contacts (modulated by the interposition of the zona pellucida) between the oocyte surface and the long microvillous evaginations projecting from the inner aspect of corona cells surface (through these structures the intraovarian cumulus oophorus may control oocyte growth and metabolism up until the time of ovulation); the occurrence of different subpopulations of cells (steroid-synthetic cells, cells producing adhesive proteins, leukocytes, macrophages) in the postovulatory, extraovarian cumulus oophorus surrounding oocytes, zygotes and early developing embryos. All these elements found in the cumulus mass may positively act, through their paracrine activities, on the chemical composition of the microenvironment in which fertilization occurs.  相似文献   

9.
Zona cutting and zona drilling of the mouse oocyte significantly increased the fertilization rate (3.8-90%) at low sperm concentrations (less than 200,000/ml) compared with zona-intact controls (0-45%). More oocytes were fertilized after zona drilling. Zona cutting was associated with a low loss of oocytes (less than 1%), no increase in polyspermy and normal development in vitro and in vivo after fertilization. There was a 4% oocyte loss rate after zona drilling, mostly due to extrusion of the oocyte from the zona during the procedure. Hatching of blastocysts occurred about 12 h earlier for zona-drilled than for zona-cut and zona-intact control oocytes. Zona drilling was associated with a higher, but not statistically significant, rate of polyspermy at all sperm concentrations tested. The proportion of zygotes developing to the blastocyst stage was not different between the techniques (zona cut, 77%; zona drilled, 66%; control, 71%). Similarly, no difference was found in the percentage of embryos implanting after blastocyst transfer to the uterine horns of pseudopregnant female mice (zona cut, 67%; zona drilled, 68%; control, 77%). Transmission electron microscopy demonstrated the induced defects in the zona with no damage to the oocyte or oolemma. Parthenogenetic activation was not seen after either of the micromanipulative techniques. Both techniques have promise for application to the human.  相似文献   

10.
Cell-to-cell communication was characterized in cumulus-oocyte complexes from rat ovarian follicles before and after ovulation. Numerous, small gap junctional contacts were present between cumulus cells and oocytes before ovulation. The gap junction are formed on the oocyte surface by cumulus cell processes that transverse the zona pellucida and contact the oolemma. The entire cumulus mass was also connected by gap junctions via cumulus-cumulus interactions. In the hours preceding ovulation, the frequency of gap junctional contacts between cumulus cells and the oocyte was reduced, and the cumulus was disorganized. Electrophysiological measurements indicated that bidirectional ionic coupling was present between the cumulus and oocyte before ovulation. In addition, iontophoretically injected fluorescein dye was tranferred between the oocyte and cumulus cells. Examination of the extent of ionic coupling in cumulus-oocyte specimens before and after ovulation revealed that ionic coupling between the cumulus and oocyte progressively decreased as the time of ovulation approached. In postovulatory specimens, no coupling was detected. Although some proteolytic mechanism may be involved in the disintegration of the cumulus-oocyte complex, neither the cumulus cells nor the oocyte produced detectable levels of plasminogen activator, a protease which is synthesized by membrana granulosa cells. In summary, cell communication is a characterisitc feature of the cumulus-oocyte complex, and this communication is terminated near the time of ovulation. This temporal pattern of the termination of communication between the cumulus and the oocyte may indicate that communication provides a mechanism for regulating the maturation of the oocyte during follicular development before ovulation.  相似文献   

11.
Guinea pig ovarian oocytes matured in vitro were inseminated in vitro with capacitated, acrosome-reacted spermatozoa and sperm penetration through the zona pellucida and into the egg cytoplasm were examined. Sperm heads passing through the zona pellucida had already lost all their acrosomal elements except for the inner acrosomal membrane and the equatorial segment. It was often observed that the texture of the zona material around the sperm head was distorted, giving the impression that the zona pellucida was parted, at least partially, by a shearing force produced by the sperm head advancing through the zona. When eggs were freed from their zonae pellucidae and inseminated, the acrosome-reacted spermatozoa immediately bound to the egg surfaces and began to fuse with the eggs; whereas the spermatozoa with intact acrosomes failed to do so. Fusion began between the egg plasma membrane and the sperm plasma membrane at the central region of the sperm head. The anterior half of the sperm head was engulfed by the egg in a phagocytic fashion, while its posterior half was incorporated into the egg by a fussion between egg and sperm plasma membranes. Incorporation of the sperm tail into the egg was achieved by fusion between the sperm and egg plasma membranes.  相似文献   

12.
Sperm-oocyte membrane fusion has been observed during monospermic fertilization of a human oocyte in vitro. Women were stimulated with both clomiphene citrate and human menopausal gonadotropin and were given human chorionic gonadotropin before a LH-surge. Twelve oocytes, collected at laparoscopy from six women who became pregnant by IVF, were allowed to mature for 7–14 hours in vitro and inseminated with preincubated sperm, fixed between 1–3 hours after insemination, and examined by transmission electron microscopy. Membrane fusion had occurred in one ovum 2 hours after insemination, and the oocyte had resumed maturation and was at anaphase II of meiosis. Cortical granules had been exocytosed, and some of their contents were visible at the surface close to the oolemma all around the oocyte. The sperm that fused with this oocyte was acrosome-reacted and had been partly incorporated into the ooplasm, while the anterior two-thirds of its head was phagocytosed by a tongue of cortical ooplasm. Membrane fusion had occurred between the oolemma and the plasma membrane overlying the postacrosomal segment of the sperm head, posterior to the equatorial vestige. Sperm chromatin had not decondensed, and serial sections revealed a midpiece attached to the basal plate and a tail located deeper in the ooplasm, all devoid of plasma membrane. Supplementary sperm penetrating the inner zona, approaching the perivitelline space, had undergone the acrosome reaction but had a persistent vestige of the equatorial segment of the acrosome with intact plasma membrane. Evidence of sperm chromatin decondensation was seen in other oocytes, 3 hours after insemination, which were at telophase II of meiosis. Eight oocytes penetrated by sperm were monospermic, while four were unfertilized. The general pattern of sperm fusion and incorporation appears to conform to that seen in most other mammals. The study also reveals that sperm have to complete the acrosome reaction before fusing with the egg.  相似文献   

13.
Oogenesis in the lizard Mabuya brachypoda is seasonal, with oogenesis initiated during May-June and ovulation occurring during July-August. This species ovulates an egg that is microlecithal, having very small yolk stores. The preovulatory oocyte attains a maximum diameter of 0.9-1.3 mm. Two elongated germinal beds, formed by germinal epithelia containing oogonia, early oocytes, and somatic cells, are found on the dorsal surface of each ovary. Although microlecithal eggs are ovulated in this species, oogenesis is characterized by both previtellogenic and vitellogenic stages. During early previtellogenesis, the nucleus of the oocyte contains lampbrush chromosomes, whereas the ooplasm stains lightly with a perinuclear yolk nucleus. During late previtellogenesis the ooplasm displays basophilic staining with fine granular material composed of irregularly distributed bundles of thin fibers. A well-defined zona pellucida is also observed. The granulosa, initially composed of a single layer of squamous cells during early previtellogenesis, becomes multilayered and polymorphic. As with other squamate reptiles, the granulosa at this stage is formed by three cell types: small, intermediate, and large or pyriform cells. As vitellogenesis progresses the oocyte displays abundant vacuoles and small, but scarce, yolk platelets at the periphery of the oocyte. The zona pellucida attains its maximum thickness during late oogenesis, a period when the granulosa is again reduced to a single layer of squamous cells. The vitellogenic process observed in M. brachypoda corresponds with the earliest vitellogenic stages seen in other viviparous lizard species with larger oocytes. The various species of the genus Mabuya provided us with important models to understand a major transition in the evolution of viviparity, the development of a microlecithal egg.  相似文献   

14.
The block to polyspermy in golden hamster eggs is believed to operate only at the zona pellucida. However, changes in the egg vitellus also prevent further entry of capacitated sperm. When zona-free hamster eggs spontaneously activated in vitro, and in vivo fertilized eggs at pronuclear stage were inseminated with capacitated human sperm, penetration did not occur. In the case of a homologous system using hamster sperm and in vivo fertilized hamster eggs, slight attachment of sperm was observed but no penetration. The cortical granules were found to be released in spontaneously activated and in fertilized eggs as observed by phase contrast microscopy. These observations suggest that the egg vitellus plays a role in the block to poiyspermy in addition to that of the zona block.  相似文献   

15.
Aged spontaneously activated hamster oocytes recovered from adult females 18 and 24 hours after ovulation were at the pronuclear stage. These oocytes and fresh controls were inseminated in vitro with capacitated hamster spermatozoa and observed with the phase-contrast microscope. The percentage of fertilization in fresh control oocytes was 98%, as compared to 36% and 18% when the oocytes were recovered 18 and 24 hours after ovulation, respectively. The mean number of sperm decondensations per egg in control oocytes was 10, and in the aged ones it was 0.69 and 0.12 when the oocytes were recovered 18 and 24 hours after ovulation, respectively. When similarly treated oocytes were studied with scanning and transmission electron microscopy, it was found that the degree of gamete membrane fusion was greater than that observed with the phase-contrast microscope, but that most of the spermatozoa failed to decondense the chromatin. We suggest that parthenogenetic oocytes at the pronuclear stage are in a similar stage of the cell cycle as in fertilized eggs, in which the cytoplasm does not have the ability to decondense the sperm chromatin.  相似文献   

16.
In Xenopus laevis , nucleoplasmin from fully grown oocytes is not highly phosphorylated, but is more extensively phosphorylated during oocyte maturation to retain this state until mid-blastula transition. Incubation of demembranated sperm with nucleoplasmin from oocytes or mature eggs revealed that egg nucleoplasmin is twice as potent as oocyte nucleoplasmin in removing sperm-specific basic proteins from chromatin (protamine-removing activity: PRA). Dephosphorylation of egg nucleoplasmin by alkaline phosphatase induced a remarkable decline of PRA in nucleoplasmin. Treatment of oocyte nucleoplasmin with cdc2 protein kinase induced an increase of the extent of phosphorylation, but to a level lower than that exhibited by egg nucleoplasmin, suggesting the involvement of other unspecified kinase(s) in phosphorylating nucleoplasmin during oocyte maturation. Incubation of sperm with cdc2 kinase induced selective phosphorylation of sperm-specific basic proteins, accompanied by their enhanced removal from sperm chromatin upon exposure to high-salt solutions. These results suggest that removal of sperm-specific basic proteins from sperm chromatin in fertilized eggs is facilitated by phosphorylation of both nucleoplasmin and sperm-specific basic proteins.  相似文献   

17.
The effects of in vitro aging of cumulus?intact versus cumulus?free metaphase II mouse oocytes were studied with respect to zona solubility and fertilization rates. Furthermore, zygotes from the in vitro fertilization studies were incubated and their developmental progress was recorded. The zona pellucida showed a gradual increase in resistance to dissolution by α?chymotrypsin with in vitro aging over a period of 6 hr. This effect was greater in cumulus?free as compared to cumulus?intact ova, but it was not nearly as profound as that seen in the control in vivo fertilized eggs. The fertilization rate of in vitro aging cumulus?intact ova compared favorably with the control in vivo aging group over a 6?hr time period. This was in sharp contrast to the decreased fertilization rate of in vitro aging cumulus?free ova over the same period of time. Lastly, development of zygotes to the blastocyst stage was also evaluated. The rate of first cleavage was similar in all experimental groups and compared favorably with the in vivo controls. However, further development to blastocysts of in vitro aged cumulus?free ova showed a marked decrease when compared to the cumulus?intact group and the in vivo fertilized controls. Thus we established a direct relationship between zona digestion time of in vitro aged cumulus?free oocytes and a decrease of fertilization rates in the mouse.  相似文献   

18.
The surface topography of the rat egg was examined during fertilization in vitro and in vivo. Using phase optics, 348 in vitro fertilized and 50 in vivo fertilized eggs were continuously monitored throughout the 7-hour period of sperm incorporation. A myriad of different surface configurations were seen, with each egg exhibiting one or more of the following changes. A small number of eggs (4–6%) formed surface elevations over the sperm head after its detachment from the flagellum, 15–30 min after sperm-egg fusion; 1 to 1.5 hr after fusion, 40–50% of the eggs produced the so-called incorporation cone, a prominent surface elevation over the decondensing sperm nucleus. The vast majority of eggs (74–82%) formed surface elevations over the proximal tip of the flagellum 2–3 hr after sperm-egg fusion. These had no association with the decondensing sperm nucleus. A few eggs (11–12%) exhibited multiple protrusions that were distributed randomly about the egg surface, whereas 14–20% did not manifest any surface elevations and remained spherical throughout the sperm incorporation period. Regardless of the type of surface change, all of the eggs resumed a spherical shape by the time sperm incorporation was complete. These observations are in contrast to the conclusions by previous authors that formation of the so-called incorporation cone over the decondensing sperm nucleus is a ubiquitous event.  相似文献   

19.
Little is known about the timing of the mammalian sperm acrosome reaction during fertilization in vivo. To study this problem, female hamsters were inseminated at about the time of ovulation, and the contents of the ampullary regions of their oviducts were subsequently examined at various intervals. No living spermatozoa were recovered from ampullae earlier than 4 hr after insemination. The first appearance of living spermatozoa coincided closely with the first appearance of fertilized eggs in the same oviduct. The total numbers of living spermatozoa did not start to exceed the number of eggs in the same ampulla, until after 50% or more of the eggs had been fertilized. Hamster spermatozoa are highly efficient at making contact with eggs, and the fertilizing spermatozoon probably spends no more than 2½ –5½ min in penetrating the cumulus oophorus. Spermatozoa that enter the ampulla appear to be ready to undergo the acrosome reaction, and complete it while they are passing through the cumulus or shortly before, or after, contacting the surface of the zona pellucida.  相似文献   

20.
To examine the integration and fate of the sperm plasma membrane following its incorporation into the oocyte plasma membrane, we have fertilized sea urchin (Arbacia punctulata) gametes reciprocally labeled with cationized ferritin. When unlabeled oocytes were inseminated with labeled sperm, cationized ferritin acceptors moved laterally from the sperm plasma membrane into the fertilization cone and surrounding microvilli, mixing with components of the oocyte plasmalemma. Labeled oocytes inseminated with unlabeled sperm produced extremely large fertilization cones, completely devoid of cationized ferritin, while the remainder of the oocyte surface remained heavily labeled. Surface area measurements indicated that if all the sperm plasmalemma were utilized to delimit a fertilization cone it would provide less than 10% of the total surface membrane. Evidence is presented indicating that a principal source of membrane to the expanding fertilization cone of inseminated oocytes is from microvilli, i.e., microvilli are retracted to accommodate fertilization cone formation. Membrane delimiting the fertilization cone has a much lower affinity for agents (cationized ferritin and concanavalin A) that stain negatively charged and carbohydrate moieties compared to other regions of the oocyte surface. These ultrastructural observations indicate that significant rearrangements occur in the oocyte and sperm plasma membranes following gamete fusion which give rise to asymmetries in membrane topography; components of both membranes are redistributed within the bilayer adjacent to and delimiting the fertilization cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号