共查询到20条相似文献,搜索用时 15 毫秒
1.
Two metabolically engineered E. coli strains HL2765k and HL27659k, while capable of producing succinate from glucose with high yields, are not able to grow and produce succinate on sucrose. Consequently, the pUR400 plasmid containing scrK, Y, A, B, and R genes was introduced into HL2765k and HL27659k, respectively. Shake flask culture studies showed that the resulting strains can utilize sucrose; the strain HL2765k pUR400 and HL27659k pUR400 can produce succinate aerobically with a molar yield of 0.78 ± 0.02 mol/mol and 1.35 ± 0.13 mol/mol, respectively. On introduction of the plasmid pHL413, which encodes the heterologous pyruvate carboxylase (PYC) from Lactococcus lactis, the molar succinate yield increased to 1.60 ± 0.01 mol of succinate per mole of sucrose by the HL2765k pUR400 pHL413 strain and to 1.84 ± 0.10 by the HL27659k pUR400 pHL413 strain. In aerobic batch bioreactor studies, the succinate production rate was faster, and succinate production reached 101.83 mM with a yield of 1.90 when dissolved oxygen (DO) was controlled at 40 ± 7%. In addition, the results showed that DO had an important effect on succinate production by influencing PYC activity. This work demonstrates the possibility of producing succinate aerobically using sucrose as the carbon source. 相似文献
2.
Intracellular protein breakdown in non-growing cells of Escherichia coli 总被引:11,自引:3,他引:11
N. S. Willetts 《The Biochemical journal》1967,103(2):453-461
1. When Escherichia coli leu(-) was incubated at 35 degrees in a medium based on minimal medium, but with the omission of phosphate ions, or glucose, or NH(4) (+) ions and leucine, intracellular protein was degraded at a rate of about 5%/hr. in each case. If Mg(2+) ions were omitted, however, the rate of degradation was 2.9%/hr. 2. Under certain conditions of incubation, protein degradation was inhibited. The inhibitor was neither NH(4) (+) ions nor amino acids, and its properties were not those of a protein, but it might be an unstable species of RNA. 3. Although a large part of the cell protein was degraded at about 5%/hr. during starvation of NH(4) (+) ions and leucine, some proteins were lost at more rapid rates, whereas others were lost at lower rates or not at all. 4. In particular, beta-galactosidase activity was lost at about 8%/hr. during starvation of NH(4) (+) ions and leucine, whereas d-serine-deaminase and alkaline-phosphatase activities were stable. During starvation of Mg(2+) ions, all three enzyme activities were stable. 相似文献
3.
Succinic acid has drawn much interest as a precursor of many industrially important chemicals. Using a variety of feedstocks for the bio-production of succinic acid would be economically beneficial to future industrial processes. Escherichia coli SBS550MG is able to grow on both glucose and fructose, but not on sucrose. Therefore, we derived a SBS550MG strain bearing both the pHL413 plasmid, which contains Lactococcus lactis pycA gene, and the pUR400 plasmid, which contains the scrK, Y, A, B, and R genes for sucrose uptake and catalyzation. Succinic acid production by this modified strain and the SBS550pHL413 strain was tested on fructose, sucrose, a mixture of glucose and fructose, a mixture of glucose, fructose and sucrose, and sucrose hydrolysis solution. The modified strain can produce succinic acid efficiently from all combinations of different carbon sources tested with minimal byproduct formation and with high molar succinate yields close to that of the maximum theoretic values. The molar succinic acid yield from fructose was the highest among the carbon sources tested. Using the mixture of glucose and fructose as the carbon source resulted in slightly lower yields and much higher productivity than using fructose alone. Fermenting sucrose mixed with fructose and glucose gave a 1.76-fold higher productivity than that when sucrose was used as the sole carbon source. Using sucrose pretreated with sulfuric acid as carbon source resulted in a similar succinic acid yield and productivity as that when using the mixture of sucrose, fructose, and glucose. The results of the effect of agitation rate in aerobic phase on succinate production showed that supplying large amount of oxygen in aerobic phase resulted in higher productions of formate and acetate, and therefore lower succinate yield. This study suggests that fructose, sucrose, mixture of glucose and fructose, mixture of glucose, fructose and sucrose, or sucrose hydrolysis solution could be used for the economical and efficient production of succinic acid by our metabolic engineered E. coli strain. 相似文献
4.
An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions 总被引:8,自引:3,他引:8
1. Some of the products excreted by cultures of lysine-requiring Escherichia coli A.T.C.C. 12408 grown under lysine-limiting conditions have been studied. 2. A glycolipid designated ;extracellular lipoglycopeptide' was prepared from culture filtrates of such organisms. It contained 35% of lipid, 19% of carbohydrate, 3.4% of P and 3.7% of N. 3. Comparison of the lipids, fatty acids, carbohydrates and amino acids of this lipoglycopeptide with those of whole cells, cell walls and cellular lipopolysaccharides shows that it has few features (except its residual lipids) in common with any of these fractions. 4. The lipoglycopeptide was antigenically related to both walls and lipopolysaccharide. 相似文献
5.
《Process Biochemistry》2014,49(5):740-744
The effects of oxido-reduction potential (ORP) control on succinic acid production have been investigated in Escherichia coli LL016. In LL016, two CO2 fixation pathways were achieved and NAD+ supply was enhanced by co-expression of heterologous pyruvate carboxylase (PYC) and nicotinic acid phosphoribosyltransferase (NAPRTase). During anaerobic fermentation, cell growth and metabolite distribution were changed with redox potential levels in the range of −200 to −400 mV. From the results, the ORP level of −400 mV was preferable, which resulted in the high succinic acid concentration (28.6 g/L) and high succinic acid productivity (0.33 g/L/h). Meanwhile, the yield of succinic acid at the ORP level of −400 mV was 39% higher than that at the ORP level of −200 mV. In addition, a higher NADH/NAD+ ratio and increased enzyme activities were also achieved by regulating the culture to a more reductive environment, which further enhanced the succinic acid production. 相似文献
6.
An extracellular lipopolysaccharide-phospholipid-protein complex produced by Escherichia coli grown under lysinelimiting conditions
下载免费PDF全文

Lysine limitation during growth of the lysine-requiring mutant of Escherichia coli 12408 resulted in the excretion of a complex containing 60% of lipopolysaccharide, 26% of extractable phospholipid and 11% of protein. The complex was obtained from the culture filtrate in yields of about 0·5g./l. by precipitation with chloroform or gel filtration; some purification steps are described. The greater part of the phospholipid consisted of phosphatidylethanolamine, which contained four main fatty acids; two monoenoic acids and a cyclopropane acid were esterified mainly in the β-position, and a saturated acid was located mainly in the γ-position. The protein component was relatively insoluble and contained an excess of acidic over basic amino acids and little cystine. The lipopolysaccharide resembled in composition the intracellular lipopolysaccharides from rough strains of E. coli. Both protein and lipopolysaccharide constituents of the complex were serologically active; the complex was less toxic than the purified lipopolysaccharide. In the electron microscope the complex showed a mixture of particles of various sizes and shapes. Rods and hollow spheroids (diameter 12–200mμ) were most common and resembled the particles previously found surrounding cells actively excreting the complex. The chloroform-precipitated material showed a tubular lamellar structure. Soluble lipopolysaccharide prepared from the complex also consisted of hollow spheres and rods. 相似文献
7.
In a medium without oxygen in the presence of nitrates, E. coli transforms p-chloranilin (p-CA) to yield a more hydrophilic compound which cannot be extracted with an organic solvent from water. The conditions for consecutive transformation of p-nitro-chlorobenzene (p-NCB) and p-CA have been determined: the reaction p-NCB leads to p-CA is inhibited by nitrates, p-CA transformation occurs in the presence of nitrates in the medium and depends on their concentration. 相似文献
8.
Background
Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources. This has led to the investigation of other routes to obtain this flavour such as the biotechnological production from ferulic acid. Studies concerning the use of engineered recombinant Escherichia coli cells as biocatalysts for vanillin production are described in the literature, but yield optimization and biotransformation conditions have not been investigated in details. 相似文献9.
Salvador Peirú Eduardo Rodríguez Hugo G. Menzella John R. Carney Hugo Gramajo 《Microbial biotechnology》2008,1(6):476-486
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant hosts. By carrying out metabolic engineering of three endogenous pathways that lead to the synthesis of TDP sugars in E. coli, we have greatly improved the intracellular levels of the common deoxysugar intermediate TDP‐4‐keto‐6‐deoxyglucose resulting in increased production of the heterologous sugars TDP‐L‐mycarose and TDP‐d ‐desosamine, both components of medically important polyketides. Bioconversion experiments carried out by feeding 6‐deoxyerythronolide B (6‐dEB) or 3‐α‐mycarosylerythronolide B (MEB) demonstrated that the genetically modified E. coli B strain was able to produce 60‐ and 25‐fold more erythromycin D (EryD) than the original strain K207‐3, respectively. Moreover, the additional knockout of the multidrug efflux pump AcrAB further improved the ability of the engineered strain to produce these glycosylated compounds. These results open the possibility of using E. coli as a generic host for the industrial scale production of glycosylated polyketides, and to combine the polyketide and deoxysugar combinatorial approaches with suitable glycosyltransferases to yield massive libraries of novel compounds with variations in both the aglycone and the tailoring sugars. 相似文献
10.
Saverino D 《The new microbiologica》2002,25(1):89-91
Facultative anaerobic bacteria, such as Escherichia coli, are more resistant to cephalosporin antibiotics during anaerobic growth. Strict anaerobic ambience reduces beta-lactamase production or the enzyme affinities for their substrates. A different balance between DNA gyrase and topoisomerase I activity, during aerobic and anaerobic growth condition, could be related to the bacteria behavior. 相似文献
11.
Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirect carbon flow into malate even in the presence of fumarase. Further deletions were needed to inactivate malic enzymes (typically gluconeogenic) and prevent conversion to pyruvate. However, deletion of these genes (sfcA and maeB) resulted in the unexpected accumulation of D-lactate despite the prior deletion of mgsA and ldhA and the absence of apparent lactate dehydrogenase activity. Although the metabolic source of this D-lactate was not identified, lactate accumulation was increased by supplementation with pyruvate and decreased by the deletion of either pyruvate kinase gene (pykA or pykF) to reduce the supply of pyruvate. Many of the gene deletions adversely affected growth and cell yield in minimal medium under anaerobic conditions, and volumetric rates of malate production remained low. The final strain (XZ658) produced 163 mM malate, with a yield of 1.0 mol (mol glucose(-1)), half of the theoretical maximum. Using a two-stage process (aerobic cell growth and anaerobic malate production), this engineered strain produced 253 mM malate (34 g liter(-1)) within 72 h, with a higher yield (1.42 mol mol(-1)) and productivity (0.47 g liter(-1) h(-1)). This malate yield and productivity are equal to or better than those of other known biocatalysts. 相似文献
12.
Christopher M. Clouthier Margaret M. Kayser 《Journal of Molecular Catalysis .B, Enzymatic》2007,46(1-4):32-36
The Escherichia coli (E. coli) overexpression systems of Baeyer–Villiger monooxygenases (BVMOs), cyclohexanone monooxygenase (CHMO) and cyclopentanone monooxygenase (CPMO) and their mutants derived from directed evolution were used as catalysts in oxidations of six 4-substituted cyclohexanones. The biotransformations were carried out with growing cells (standard screening conditions) and with non-growing cells. The surprising result is that several substrates that give negative results (non-acceptance) under the screening conditions, afford excellent conversions in the transformations under non-growing conditions. The new bioreagents for Baeyer–Villiger oxidations with divergent, high enantioselectivities reported here can be used in scaled-up fermentation under non-growing conditions. 相似文献
13.
Ma JF Jiang M Chen KQ Xu B Liu SW Wei P Ying HJ Chang HN Ouyang PK 《Bioprocess and biosystems engineering》2011,34(4):411-418
Escherichia coli AFP111, a pflB, ldhA, ptsG triple mutant of E. coli W1485, can be recovered for additional succinate production in fresh medium after two-stage fermentation (an aerobic growth
stage followed by an anaerobic production stage). However, the specific productivity is lower than that of two-stage fermentation.
In this study, three strategies were compared for reusing the cells. It was found when cells were aerobically cultivated at
the end of two-stage fermentation without supplementing any carbon source, metabolites (mainly succinate and acetate) could
be consumed. As a result, enzyme activities involved in the reductive arm of tricarboxylic acid cycle and the glyoxylate shunt
were enhanced, yielding a succinate specific productivity above
1 2 5 \textmg \textgDCW - 1 \texth - 1 1 2 5\;{\text{mg}}\;{\text{g}}_{\rm DCW}^{ - 1} \,{\text{h}}^{ - 1} and a mass yield above 0.90 g g−1 in the subsequent anaerobic fermentation. In addition, the intracellular NADH of cells subjected to aerobic cultivation with
metabolites increased by more than 3.6 times and the ratio of NADH to NAD+ increased from 0.4 to 1.3, which were both favorable for driving the TCA branch to succinate. 相似文献
14.
Valderrama-Rincon JD Fisher AC Merritt JH Fan YY Reading CA Chhiba K Heiss C Azadi P Aebi M DeLisa MP 《Nature chemical biology》2012,8(5):434-436
We performed bottom-up engineering of a synthetic pathway in Escherichia coli for the production of eukaryotic trimannosyl chitobiose glycans and the transfer of these glycans to specific asparagine residues in target proteins. The glycan biosynthesis was enabled by four eukaryotic glycosyltransferases, including the yeast uridine diphosphate-N-acetylglucosamine transferases Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2. By including the bacterial oligosaccharyltransferase PglB from Campylobacter jejuni, we successfully transferred glycans to eukaryotic proteins. 相似文献
15.
We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter . h). Ca(OH)(2) was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N(2) for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YYC202 frdABCD) reduced succinate formation by 70% to less than 3 g/liter. (13)C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyoxylate did not reenter the tricarboxylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter . h during the anaerobic phase. 相似文献
16.
N. Kosugi Y. Inoue H. -I. Rhee K. Murata A. Kimura 《Applied microbiology and biotechnology》1988,28(3):263-267
Summary The enzymatic production of S-lactoylglutathione was studied by applying glyoxalase I to glycerol-grown cells of Saccharomyces cerevisiae and Escherichia coli cells dosed with Pseudomonas putida glyoxalase I gene. The glyoxalase I in S. cerevisiae cells was markedly induced when the cells were grown on glycerol. The activity of the enzyme in glycerol-grown cells was more than 20-fold higher compared with that of the glucose-grown cells. By using extracts of glycerol-grown yeast cells, about 5 mmol/1 (2 g/l) of S-lactoylglutathione was produced from 10 mM methylglyoxal and 50 mM glutathione within 1 h. The extracts of E. coli cells carrying a hybrid plasmid pGI423, which contains P. putida glyoxalase I gene, showed approximately 170-fold higher glyoxalase I activity than that of E. coli cells without pGI423. The extracts were used for production of S-lactoylglutathione and, under optimal conditions, about 40 mmol/l (15 g/l) of S-lactoylglutathione was produced from 50 mM methylglyoxal and 100mM glutathione within 1 h. 相似文献
17.
Glycerol formation ofDunaliella cells in non-growing media was investigated.Dunaliella tertiolecta andD. bioculata grew well in a NaCl medium but not at all in a LiCl or a MgCl2 medium. When the cells originally suspended in a medium containing 0.5 M NaCl were transferred to media which contained one
of 1 M NaCl, 1 M LiCl or 0.7 M MgCl2, the intracellular glycerol content increased.D. tertiolecta cultured in either a 1 M LiCl or a 0.7 M MgCl2 medium did not multiply, but maintained abilities to evolve O2 in the light and absorb O2 in thedark even after about a 5 day culture. From these results, it can be concluded that the halotolerance ofDunaliella to different kinds of salts is not directly related to osmoregulation by the glycerol formation. 相似文献
18.
19.
John Park María Rodríguez-Moyá Mai Li Eran Pichersky Ka-Yiu San Ramon Gonzalez 《Journal of industrial microbiology & biotechnology》2012,39(11):1703-1712
Methyl ketones are a group of highly reduced platform chemicals with widespread applications in the fragrance, flavor and pharmacological industries. Current methods for the industrial production of methyl ketones include oxidation of hydrocarbons, but recent advances in the characterization of methyl ketone synthases from wild tomato have sparked interest towards the development of microbial platforms for the industrial production of methyl ketones. A functional methyl ketone biosynthetic pathway was constructed in Escherichia coli by over-expressing two genes from Solanum habrochaites: shmks2, encoding a 3-ketoacyl-ACP thioesterase, and shmks1, encoding a beta-decarboxylase. These enzymes enabled methyl ketone synthesis from 3-ketoacyl-ACP, an intermediate in the fatty acid biosynthetic cycle. The production of 2-nonanone, 2-undecanone, and 2-tridecanone by MG1655 pTH-shmks2-shmks1 was initially detected by nuclear magnetic resonance and gas chromatography–mass spectrometry analyses at levels close to 6?mg/L. The deletion of major fermentative pathways leading to ethanol (adhE), lactate (ldhA), and acetate (pta, poxB) production allowed for the carbon flux to be redirected towards methyl ketone production, doubling total methyl ketone concentration. Variations in methyl ketone production observed under different working volumes in flask experiments led to a more detailed analysis of the effects of oxygen availability on methyl ketone concentration in order to determine optimal levels of oxygen. The methyl ketone concentration achieved with MG1655 ?adhE ?ldhA ?poxB ?pta pTrcHis2A-shmks2-shmks1, the best performer strain in this study, was approximately 500?mg/L, the highest reported for an engineered microorganism. Through the establishment of optimal operating conditions and by executing rational metabolic engineering strategies, we were able to increase methyl ketone concentrations by almost 75-fold from the initial confirmatory levels. 相似文献
20.
Turnover of protein in growing and non-growing populations of Escherichia coli 总被引:26,自引:0,他引:26
下载免费PDF全文

MANDELSTAM J 《The Biochemical journal》1958,69(1):110-119