首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》1970,205(3):513-519
1. The oligomycin-sensitive Mg2+-dependent ATPase activity of mitochondria isolated from wild-type yeast Saccharomyces cerevisiae was only slightly inhibited by atractyloside at concentrations which entirely prevented oxidative phosphorylation. This indicated that most of the ATPase in these mitochondrial preparations was located outside the atractyloside-sensitive barrier and did not participate in the energy-transfer process.

2. ATPase activity of mitochondria isolated from nuclear gene mutants deficient in a single cytochrome, a, b, or c, respectively, was strongly inhibited by oligomycin. The mitochondria from these mutants, like those from the wild-type strain, were able to incorporate amino acids into protein.

3. Mitochondrial ATPase activity of single nuclear gene mutants deficient in both cytochromes a and b was only slightly inhibited by oligomycin. These mitochondria were incapable of incorporating amino acids into protein. The mitochondria from these nuclear mutants thus resembled mitochondria of cytoplasmic respiration-deficient mutants.

4. The results suggest that mitochondrial cytochromes may be coded by nuclear genes and that product(s) of mitochondrial protein synthesis may be required for integrating the cytochromes a and b and the components of the oligomycin-sensitive ATPase complex into the mitochondrial membranes.  相似文献   


2.
Energy metabolism and mitochondria have been discussed with respect to their role in the circadian rhythm mechanism for some time. Numerous examples of inhibitors that affect the mitochondria of plants and animals and microorganisms are known, which cause large phase shifts in the rhythms of these organisms. Analogous studies on the role of mitochondria in the Neurospora circadian rhythm mechanism have also been reported and summarized. This communication differs from previous studies on other organisms in that it will focus on two lines of evidence derived from studies on Neurospora strains carrying mutations affecting the mitochondria, (a) Strains whose growth rate is resistant to oligomycin (olit) owing to an altered protein in the F0 sector of the mitochondrial ATPase, showed no phase shifts when pulsed with oligomycin. Control strains (oli8) showed large phase shifts when pulsed with oligomycin. This indicates that the phase-shifting effect of oligomycin is due to the direct inhibition of the mitochondrial ATPase and not some side effect of this inhibitor, (b) In Neurospora, many different strains are known that carry mutations in the nuclear or mitochondrial genome that affect mitochondrially localized proteins. Some of these, such as oli', [MI-3], or cya-5, showed shorter (≥ 19-h) periods compared with the normal (21.5-h) period. Others showed little or no change in period. Those mutant strains exhibiting shorter periods also contained ≥60% more mitochondrial protein per gram total protein in extracts compared with the normal strains. Assays of the level of a mitochondrial-specific protein, acyl carrier protein, showed that the cellular content of this protein was approximately doubled. A parallel set of studies on the effects of antimycin or chloramphenicol on Neurospora demonstrated that these inhibitors also produced shorter periods as well as increased amounts of mitochondrial proteins. These two new lines of evidence may be interpreted to indicate that in Neurospora either some part of the oscillator is localized to the mitochondria and/or that mitochondria exert their effect on the clock mechanism through their effects on biosynthetic pathways or by their contribution in determining ion gradients.  相似文献   

3.
G. Lauquin  P.V. Vignais 《BBA》1973,305(3):534-556
1. Optimal test conditions for adenine nucleotide translocation in Candida utilis mitochondria are a standard medium, consisting of 0.63 M mannitol, 2 mM EDTA (or ethylene glycol tetraacetic acid, EGTA), 10 mM morpholinopropane sulfonic acid (pH 6.8), and a temperature of 0 °C.

2. Adenine nucleotide translocation in C. utilis mitochondria is an exchange-diffusion process. The whole pool of internal adenine nucleotides is exchangeable, ADP being the most readily exchangeable nucleotide. The rate of mitochondrial ADP exchange, but not the Km value, depends on growth conditions. At 0 °C, the rate is about 3 to 4 nmoles ADP/min per mg protein for mitochondria obtained from yeast grown in the presence of 1.5% glucose; it rises to 11.5 nmoles when glucose is replaced by 3% ethanol in the growth medium. The Km value for ADP is 2 μM. The Q10 is about 2 between 0 and 20 °C. Among other exchangeable adenine nucleotides are ATP, dADP and the methylene and the hypophosphate analogues of ADP. Unlike mammalian mitochondria, C. utilis mitochondria are able to transport external UDP by a carboxyatractyloside-sensitive process.

3. Under conditions of oxidative phosphorylation (phosphate and substrate present in an aerated medium), added ADP is exchanged with internal ATP. A higher ATP/ADP ratio was found in the extramitochondrial space than in the intramito-chondrial space. The difference between the calculated phosphate potentials in the two spaces was 0.9–1.7 kcal/mole.

4. Atractyloside, carboxyatractyloside, bongkrekic acid and palmityl-CoA inhibit mitochondrial adenine nucleotide translocation in C. utilis as they do in mammalian mitochondria, but 2 to 4 times less efficiently. The inhibition due to atractyloside or palmityl-CoA is competitive with respect to ADP whereas that due to bongkrekic acid and carboxyatractyloside is non-competitive. Carboxyatractyloside and atractyloside inhibitions are additive. The apparent Kd for the binding of [35S]-carboxyatractyloside and [14C]bongkrekic acid is 10–15 nM and the concentration of sites 0.4–0.6 nmole/mg protein in both cases. [35S]Carboxyatractyloside binding is competitively displaced by atractyloside and vice versa.

5. Binding of [14C]ADP has been carried out with mitochondria depleted of their endogenous adenine nucleotides by incubation with phosphate and Mg2+ at 20 °C. The amount of bound [14C]ADP which is atractyloside removable is 0.08–0.16 nmole/mg protein.

6. The rate of ADP transport is quite different in mitochondria isolated from C. utilis, according to whether it is grown on glucose, or on ethanol or in the presence of chloramphenicol; for instance, it decreases by 10 times when 3% ethanol in the growth medium is replaced by 10% glucose and by 5 times when chloramphenicol is added to the medium. These variations are accompanied by parallel variations in cytochrome aa3. The number of atractyloside-sensitive ADP binding sites is not modified by the above conditions of culture, nor the number of [35S]carboxyatractyloside binding sites. The affinity for ADP is apparently not significantly modified, nor the size of the endogenous adenine nucleotide pool. In contrast to glucose repression or chloramphenicol inhibition, semi-anaerobiosis in C. utilis lowers significantly the mitochondrial binding capacity for carboxyatractyloside. Strict anaerobiosis in S. cerevisiae results in a practical loss of the cytochrome oxidase activity, and also of the carboxyatractyloside and ADP binding capacity. Transition from anaerobiosis to aerobiosis restores the cytochrome oxidase activity and the ADP and carboxyatractyloside binding capacities.  相似文献   


4.
1. 1. The development of thermotolerance has been shown to protect blowfly flight muscle mitochondrial function from damage resulting from an LD50 in vivo heat dose.
2. 2. The principal sites of the damage have been studied using specific inhibitors of the respiratory chain, rotenone and antimycin A, together with substrates that stimulate respiration through the different complexes.
3. 3. Complex I was identified as the primary site for heat damage. State III respiration was inhibited following the LD50 in vivo heat dose, and uncoupling with FCCP did not restore respiration to control levels, indicating that the respiratory enzymes were inactivated. The development of thermotolerance protected this site from heat damage.
4. 4. In contrast, G3-P stimulated respiration was the same in control, LD50 in vivo treated controls and LD50, in vivo treated thermotolerant mitochondria, and significantly higher than state III respiration of LD50 in vivo treated controls. This suggested that respiration through G3-P dehydrogenase, Co enzyme Q and Complex III is not damaged. However, as G3-P stimulated respiration of coupled mitochondria from LD50 in-vivo treated flies was markedly reduced (El-Wadawi and Bowler, 1995. J. exp. Biol. 198: 2413–2421), phosphorylation at complex III may be inhibited also.
5. 5. Ferrocyanide stimulated respiration through cytochrome c-Complex IV was also inhibited in LD50 in vivo treated flies, as compared with unheated control mitochondria. However, thermotolerance protected this site also from heat damage.
  相似文献   

5.
A. Van Tol  W. C. Hü  lsmann 《BBA》1969,189(3):342-353
1. The distribution of palmitoyl-CoA:carnitine palmitoyltransferase has been studied in subcellular fractions of rat liver. By using two different estimations for the enzyme activity and by differential centrifugation and linear sucrose density gradient centrifugation, the enzyme is shown to be localized both in mitochondria and microsomes.

2. The mitochondrial palmitoyl-CoA: carnitine palmitoyltransferase is localized in the inner membrane plus matrix fraction.

3. During palmitate oxidation by isolated mitochondria, in the presence of a physiological concentration of carnitine, palmitoylcarnitine accumulates. From this and experiments with sonicated mitochondria, it is concluded that the capacities of long-chain fatty acid activation and of palmitoyl-CoA:carnitine palmitoyltransferase in vitro by far exceed the capacity of fatty acid oxidation.  相似文献   


6.
Submitochondrial particles isolated from Tetrahymena pyriformis contain essentially the same redox carriers as those present in parental mitochondria: at pH 7.2 and 22 °C there are two b-type pigments with half-reduction potentials of −0.04 and −0.17 V, a c-type cytochrome with a half reduction potential of 0.215 V, and a two-component cytochrome a2 with Em7.2 of 0.245 and 0.345 V.

EPR spectra of the aerobic submitochondrial particles in the absence of substrate show the presence of low spin ferric hemes with g values at 3.4 and 3.0, a high spin ferric heme with g = 6, and a g = 2.0 signal characteristic of oxidized copper. In the reduced submitochondrial particles signals of various iron-sulfur centers are observed.

Cytochrome c553 is lost from mitochondria during preparation of the submitochondrial particles. The partially purified cytochrome c553 is a negatively charged protein at neutral pH with an Em7.2 of 0.25 V which binds to the cytochrome c-depleted Tetrahymena mitochondria in the amount of 0.5 nmol/mg protein with a KD of 0.8 · 10−6 M. Reduced cytochrome c553 serves as an efficient substrate in the reaction with its own oxidase. The EPR spectrum of the partially purified cytochrome c553 shows the presence of a low spin ferric heme with the dominant resonance signal at g = 3.28.

A pigment with an absorption maximum at 560 nm can be solubilized from the Tetrahymena cells with butanol. This pigments has a molecular weight of approx. 18 000, and Em7.2 of −0.17 V and exhibits a high spin ferric heme signal at g = 6.  相似文献   


7.
The role of oncotic pressure (i.e. pressure created by non-penetrants of high molecular weight) in structural responses of mitochondria has been studied.

It has been found that treatment of beef of rabbit heart mitochondria by a synthetic non-penetrant of high molecular weight, polyvinyl pyrrolidone, induces a decrease in the intermembrane (intracristal) space and an increase in the matrix space of mitochondria. As a result, the appearance of the in vitro mitochondria proves to be similar to that of the in situ ones. If a Waring blender is used to homogenize the tissue, only a portion of the mitochondria respond to polyvinyl pyrrolidone. If a glass-Teflon homogenizer is used instead all the mitochondria prove responsive. The addition of 0.5 mM polyvinyl pyrrolidone is found to be sufficient for the effect to be observable.

In the presence of polyvinyl pyrrolidone, energy-dependent changes in mitochondrial structure can be demonstrated. The increase in matrix space by polyvinyl pyrrolidone treatment enlarges even more when an energy source, a penetrating weak acid and a penetrating cation are added. The size of the matrix increases in the following order: (1) de-energized mitochondria without polyvinyl pyrrolidone, (2) de-energized + polyvinyl pyrrolidone, (3) energized + polyvinyl pyrrolidone, (4) as (3) + phosphate (“twisted” configuration of cristae), (5) as (3) + phosphate + Ca2+. Structural changes resembling those indicated in points (2)–(5) are shown for mitochondria in the tissue, when pieces of rat diaphragm muscle treated with an uncoupler, phosphate, and Ca2+ were studied in conditions excluding anaerobiosis.

The effect of polyvinyl pyrrolidone is suggested to be due to it balancing the oncotic pressure created by high molecular weight compounds dissolved in the intermembrane water, which are incapable of penetrating the outer mitochondrial membrane. A concept is discussed considering mitochondrial structure changes as a function of the osmotic gradient across the inner membrane and the oncotic gradient across the outer membrane of mitochondria.  相似文献   


8.
Changes in the mitochondria of aerobically grown Saccharomyces cerevisiae cells upon deaeration and subsequent aeration of the medium were studied.

1. It is shown that removal of oxygen at the end of the exponential phase of growth (after completion of mitochondria formation) causes a decrease in activity of the respiratory enzymes. The activity of the complete respiratory system decreases much more rapidly than the activities of its fragments (NADH: ferricyanide reductase, succinate:ferricyanide reductase, NADH:cytochrome c reductase, succinate:cytochrome c reductase and cytochrome oxidase). The activities are restored to their initial level upon aeration of the cell suspension. The addition of Tween-80 and ergosterol to the medium prior to deaeration does not prevent inactivation of the respiratory system.

All the changes in mitochondria described occurred under conditions where cell division was insignificant.

2. Deaeration of the medium decreases the content of cytochromes b and aa3 in the mitochondrial fraction, cytochrome aa3 “disappearing” more quickly. The concentration of cytochromes in this fraction increases upon subsequent aeration of the cells. The total cytochromal content of the cells remains practically unchanged under the same conditions.

3. According to electron microscopic data, anaerobiosis causes a certain disorganization of mitochondrial cristal membranes. The mitochondrial structures are recovered upon aeration of the yeast cell suspension. It may be reasoned that inactivation and reactivation of the respiratory system are associated with reversible changes in mitochondrial membrane structure.

4. The effect of protein synthesis inhibitors on the restoration of mitochondria was investigated. It is shown that chloramphenicol does not suppress this process. In the presence of cycloheximide, oxygen induces reactivation of the respiratory system and simultaneously the appearance of particles resembling mitochondria. However, these particles gradually undergo morphological changes and the respiratory activity of the mitochondrial fraction decreases. Cycloheximide added to yeast cells that had not been deaerated, did not affect their mitochondria.

5. The results described suggest that the functions of oxygen in the formation of mitochondria are not restricted to the induction of mitochondrial protein synthesis and to the participation in the synthesis of certain non protein membrane components. Evidently, oxygen has a direct effect on the assembly of the respiratory system and mitochondrial membranes as a whole.  相似文献   


9.
Chicken liver basic fatty acid-binding protein (pI = 9.0) has been purified with a high yield by a modification of a method originally applied to rat liver. The final product is highly homogeneous and can be used to grow crystals that belong to two different space groups. The crystals are either tetragonal, space group P42212 with a = b = 60.2 Å and c = 138.1 Å or orthorhombic, space group P212121 with a = 60.7 Å, b = 40.1 Å and c = 66.7 Å. The second form appears to be more suitable for X-ray diffraction studies, it diffracts to at least 2.8 Å resolution and it is believed to contain one protein molecule in the crystallographic asymmetric unit.  相似文献   

10.
The anthracycline aclarubicin (ACLA) is an intercalative antibiotic and antineoplastic agent that efficiently binds to DNA, leading to a secondary inhibition of the catalytic activity of topoisomerase II (topo II) on DNA. Besides this activity, ACLA has been reported to exert a concomitant poisoning effect on topo I, in a fashion similar to that of the antitumor drug camptothecin and its derivatives. As a consequence of this dual (topo II catalytic inhibiting/topo I poisoning) activity of ACLA, the picture is somewhat confusing with regards to DNA damage and cytotoxicity. We studied the capacity of ACLA to induce catalytic inhibition of topo II as well as cytotoxic effects and DNA damage in cultured Chinese hamster V79 cells and their radiosensitive counterparts irs-2. The ultimate purpose was to find out whether differences could be observed between the two cell lines in their response to ACLA, as has been widely reported for radiosensitive cells treated with topo poisons. Our results seem to agree with the view that the radiosensitive irs-2 cells appear as hypersensitive ACLA as compared with radiation repair-proficient V79 cells. The recovery after ACLA treatment was also followed-up, and the irs-2 mutant was found to be less proficient than V79 to repair DNA strand breaks induced by ACLA.  相似文献   

11.
Carla A.M. Marres  E.C. Slater 《BBA》1977,462(3):531-548
1. The polypeptide composition of purified QH2:cytochrome c oxidoreductase prepared by three different methods from beef-heart mitochondria has been determined. Polyacrylamide gel electrophoresis in the presence of dodecyl sulphate resolves eight intrinsic polypeptide bands; when, in addition, 8 M urea is present and a more highly cross-linked gel is used, the smallest polypeptide band is resolved into three different bands.

2. The identity of several polypeptide bands has been established by fractionation. The two heaviest polypeptides (bands 1 and 2) represent the so-called core proteins, band 3 the hemoprotein of cytochrome b, band 4 the hemoprotein of cytochrome c1, band 5 the Rieske Fe-S protein, band 6 a polypeptide associated with cytochrome c1 and identified with the so-called oxidation factor, and band 7 a polypeptide associated with cytochrome b.

3. The validity of molecular weight estimates for the polypeptides of the enzyme based on their mobility on dodecyl sulphate gels has been examined. The polypeptides of bands 1, 2 and 3 showed anomalous migration rates. The molecular weights of the other polypeptides have been estimated from their relative mobilities on either dodecyl sulphate gels or 8 M urea-dodecyl sulphate gels as 29 000, 24 000, 12 000, 8000, 6000, 5000 and 4000, respectively.

4. The stoicheiometry of the different polypeptides in the intact complex was determined using separate staining factors for the individual polypeptide bands.  相似文献   


12.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


13.
E.C. Slater  J. Rosing  A. Mol 《BBA》1973,292(3):534-553

1. 1. The phosphorylation potential, ΔGP = ΔG0′ + 1.36 log ([ATP]/[ADP][Pi]), where ΔGO′ is the standard free energy of hydrolysis of ATP at a given pH, and [ATP], [ADP] and [Pi] refer to concentrations in the suspending medium, has been determined in rat-liver mitochondria under various conditions.

2. 2. The ATP/ADP ratio is relatively constant, over a 10-fold range of phosphate concentration. Thus, the phosphate potential is higher at low phosphate concentration. State-4 rat-liver mitochondria in the presence of succinate, oxygen and low concentrations of phosphate in State 4 maintain a phosphorylation potential of 16.1 kcal (67.3 kJ) per mole ATP.

3. 3. High concentrations of ATP inhibit ADP uptake, and it is suggested that this is the reason for the independence of the ATP/ADP ratio on the phosphate concentration. A steady-state ratio is set up dependent upon two processes that are relatively slow compared with State-3 respiration, namely ADP transport and ATP hydrolysis.

4. 4. The phosphorylation potential calculated from the concentrations of total ADP, ATP and Pi within State-4 mitochondria is 4.5 kcal/mole less than that in the suspending medium.

5. 5. It was shown experimentally that the phosphorylation potential cannot be calculated from the ΔG of the redox couple, the respiratory-control ratio and the P:O ratio, as has been suggested in the literature.

6. 6. The measured phosphorylation potential is 83% of that calculated from the span succinate to oxygen, assuming thermodynamic equilibrium, and 95% of that calculated from the span NADH to oxygen.

7. 7. Based on the measurements of the phosphorylation potential and of the redox potentials and redox states of redox components in mitochondria, ubiquinone and cytochrome b are found at their expected position at the junction of the phosphorylations at Sites 1 and 2. The iron-sulphur centres 2 and 5 and the iron-sulphur centre of succinate dehydrogenase also probably lie at this junction. Cytochrome a3 lies at its expected junction between phosphorylation Sites 2 and 3. A number of electron carriers (cytochromes c, c1, and a, the iron-sulphur centre of Complex III and the EPR-detectable copper), however, lie in the ‘no-man's land’ within Site 2.

8. 8. A phosphorylation potential of 16.1 kcal/mole corresponds to a membrane potential of 350 mV in State 4, on the basis of the chemiosmotic hypothesis.

Abbreviations: CCCP, carbonyl cyanide m-chlorophenylhydrazone  相似文献   


14.
Fernand G. P  ron  Charles P. W. Tsang 《BBA》1969,180(3):445-458
Pyruvate and pyruvate plus ATP have been shown to support 11β-hydroxylation of 11-deoxycorticosterone into corticosterone in incubated rat adrenal gland mitochondria. Corticosterone production with pyruvate plus ATP was not as great as with malate plus Pi, malate plus ATP or malate plus pyruvate. Respiratory chain inhibitors, trans-aconitate, oxaloacetate, arsenite and the uncoupler 2,4-dinitrophenol, inhibited corticosterone formation. On the other hand, cysteine sulfinate and pyruvate, which led to the removal of excess metabolic oxaloacetate formed from malate oxidation, increased rat adrenal mitochondrial O2 consumption as well as corticosterone production from 11-deoxycorticosterone. Pi and ATP also appeared to act in the same way in that these agents brought about a greater conversion rate of oxaloacetate into pyruvate. Pyruvate, resulting from the oxidation of malate, accumulated in the incubation system only when arsenite was added. Arsenite additions to malate and isocitrate inhibited the conversion of 11-deoxycorticosterone into corticosterone except when the 11β-hydroxylation of 11-deoxycorticosterone was supported with exogenous NADPH in Ca2+-swollen mitochondria. These results as well as the observations that NAD-linked malate dehydrogenase ( -malate: NAD+ oxidoreductase (decarboxylating), EC 1.1.1.39) is at least 10 times as active as the NADP-linked enzyme ( -malate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.39) in sonicated rat adrenal gland mitochondria, led to the conclusion that under our incubation conditions malate was mainly oxidized via the NAD-linked malate dehydrogenase. The fact that in malate incubations pyruvate did not accumulate because of its further metabolism in rat adrenal gland mitochondria, does not support the possibility that these mitochondria are the source of pyruvate for a “malate shuttle” originally thought to occur in rat adrenal gland7. This shuttle would have depended on the formation of pyruvate from malate in rat adrenal gland mitochondria followed by extrusion of the pyruvate formed intramitochondrially into the cytoplasm of the cell.  相似文献   

15.
Isolated mitochondria respiring on physiological substrates, both in state 4 and 3, are reported to be or not to be a source of reactive oxygen species (ROS). The cause of these discrepancies has been investigated. As protein concentration was raised in in vitro assays at 37°C, the rate of H2O2 release by rat heart mitochondria supplemented with pyruvate/malate or with succinate (plus rotenone) was shown to increase (0.03-0.15 mg protein/ml), to decrease (0.2-0.5 mg protein/ml) and to be negligible (over 0.5 mg protein/ml). The inhibition of mitochondrial respiration (with rotenone or antimycin A) or the increase in the oxygen concentration dissolved in the assay medium allowed an enhancement of ROS production rate throughout the studied range of protein concentrations. In mitochondria respiring in state 3 on pyruvate/malate or on succinate (plus rotenone), ROS release vanished for protein concentrations over 0.5 or 0.2 mg/ml, respectively. However, ROS production rates measured with low protein concentrations (below 0.1 mg/ml) or in oxygen-enriched media were similar or even slightly higher in the active respiratory state 3 than in the resting state 4 for both substrates. Consequently, these findings indicate that isolated mitochondria, respiring in vitro under conditions of forward electron transport, release ROS with Complex I- and II-linked substrates in the resting condition (state 4) and when energy demand is maximal (state 3), provided that there is sufficient oxygen dissolved in the medium.  相似文献   

16.
本文通过对西藏湖泊长刺溞复合种(Daphnia longispina complex)中分布最广的3个物种, 即长刺溞(D. longispina)、盔形溞(D. galeata)和颈齿溞(D. dentifera)线粒体COI基因序列以及GenBank中欧洲的长刺溞、加拿大的颈齿溞和我国东部低海拔地区的盔型溞COI基因序列的比较分析, 研究了西藏湖泊长刺溞复合种的系统进化关系, 发现西藏地区的盔型溞、颈齿溞和长刺溞均已出现较大分化。颈齿溞种群内遗传差异度为0.33-2.32%, 盔型溞为0.33-2.74%, 长刺溞的遗传差异度最高, 为1.31-5.50%。基于COI基因序列构建的最大似然树和贝叶斯系统树均表明, 长刺溞复合种由3个进化分支组成, 分别对应长刺溞、盔型溞和颈齿溞, 三者之间的遗传差异度为9.40-16.98%(Kimura 2-parameter双参数模型)。基于COI基因单倍型(haplotype)所构建的网络关系也支持上述3个分支的存在。早期记录虽然显示长刺溞在我国分布较广, 但本次调查只在班公错有发现, 相比之下, 盔形溞和颈齿溞则分布更广。我们的研究表明, 由于形态学鉴定上的局限性, 早期的长刺溞记录很可能混杂了容易引起混淆的盔型溞或颈齿溞。  相似文献   

17.

1. 1.|The mitochondrial population in hypothalamic and hypophysial brain tissue from warm (30°C) and cold (5°C) acclimated goldfish (Carassius auralus L.) was analyzed using sterological techniques.

2. 2.|It was revealed that there is a significantly larger volume density (Vv) in the cold acclimated tissue, with no significant difference in either of the surface densities (Svext and Svint) from either of the brain areas.

3. 3.|The hypothalamic brain tissue has a significantly lower specific surface (S/V) in the cold acclimated tissue but there is not a significant difference in this parameter for the hypophysial brain tissue.

4. 4.|The values for these three parameters (Vv, Svext and SVint, and S/V) indicate that mitochondria from acclimated brain tissue undergo shape changes in response to thermal stress.

5. 5.|We suggest that the shape changes may be related to the change in the phospholipid composition of the inner mitochondrial membrane with acclimation temperature.

Author Keywords: Temperature acclimation; mitochondria; quantitative; stereology; goldfish; hypothalamus; hypophysis; brain  相似文献   


18.
The cytochrome components of adult Paragonimus miyazakii mitochondria were investigated by polyacrylamide gel electrophoresis. The mitochondria were found to contain cytochromes b, c1, c and aa3. Two types of mitochondria, lightweight mitochondria (LWMt) and heavyweight mitochondria (HWMt), were obtained by centrifugation from the mitochondrial fraction of the adult Paragonimus ohirai. The succinate-reduced and oxidized difference spectrum of LWMt and HWMt at −196°C revealed that both mitochondria contained at least functional levels of cytochromes b, c1, c and a low value of aa3. Although succinate-reduced cytochromes of LWMt reoxidized in the presence of air, those of HWMt did so only minimally.  相似文献   

19.
The nitrous oxide (N2O) reductase (nos) gene cluster from Achromobacter cycloclastes has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ (structural N2O reductase gene), nosD, nosF, nosY, nosL, and nosX are detected, indicating a genetic organization similar to that of Rhizobium meliloti. To aid homology studies, nosR from R. meliloti has also been sequenced. Comparison of the deduced amino acid sequences with corresponding sequences from other organisms has also allowed structural and functional inferences to be made. The heterologous expression of NosD, NosZ (N2O reductase), and NosL is also reported. A model of the CuA site in N2O reductase, based on the crystal structure of this site in bovine heart cytochrome c oxidase, is presented. The model suggests that a His residue of the CuA domain may be a ligand to the catalytic CuZ site. In addition, the origin of the spectroscopically-observed Cys coordination to CuZ is discussed in terms of the sequence alignment of seven N2O reductases.  相似文献   

20.
(1) The ATPase inhibitor protein has been isolated from rat liver mitochondria in purified form. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis is approximately 9500, and the isoelectric point is 8.9.

(2) The protein inhibits both the soluble ATPase and the particle-bound ATPase from rat liver mitochondria. It also inhibits ATPase activities of soluble F1, and inhibitor-depleted submitochondrial particles derived from bovine heart mitochondria.

(3) On particle-bound ATPase the inhibitor has its maximal effect if incubated in the presence of Mg2+. ATP at slightly acidic pH.

(4) The inhibitor has a minimal effect on Pi-ATP exchange activity in sonicated submitochondrial particles. However, unexpectedly the inhibitor greatly stimulates Pi-ATP exchange activity in whole mitochondria while the low ATPase activity of the mitochondria is not affected. The possible mechanism of action of the inhibitor on intact mitochondria is offered.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号