首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of spinach were grown in Hoagland's medium containing 0, 20, 40, 60, 80, 100 microM PbCl2, respectively, for 4 weeks. Chloroplasts were assayed for overproduction of reactive oxygen species (ROS) such as superoxide radicals (O2(*-)) and hydrogen peoxide (H2O2) and of lipid peroxide (malonyldialdehyde) and for activities of the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase and glutathione content, oxygen-evolving rate, and chlorophyll content. Increase in both ROS and lipid peroxide content and reduction in photosynthesis and activities of the antioxidant defense system indicated that spinach chloroplast underwent a stress condition due to an oxidative attack. Seedling growth cultivated in containing Pb2+ media was significantly inhibited. The results imply that spinach chloroplast was not able to tolerate the oxidative stress induced by Pb2+ due to having no effective antioxidant defense mechanism.  相似文献   

2.
Chloroplasts were isolated from spinach cultured in calcium-deficient, cerium-chloride-administered calcium-present Hoagland’s media or that of calcium-deficient Hoagland’s media and demonstrated the effects of cerium on distribution of light energy between photosystems II and I and photochemical activities of spinach chloroplast grown in calcium-deficient media. It was observed that calcium deprivation significantly inhibited light absorption, energy transfer from LHCII to photosystemII, excitation energy distribution from PSI to PSII, and transformation from light energy to electron energy and oxygen evolution of chloroplasts. However, cerium treatment to calcium-deficient chloroplasts could obviously improve light absorption and excitation energy distribution from photosystem I to photosystem II and increase activity of whole chain electron transport, photosystems II and I DCPIP photoreduction, and oxygen evolution of chloroplasts. The results suggested that cerium under calcium deficiency condition could substitute for calcium in chloroplasts, maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloroplast, but the mechanisms still need further study.  相似文献   

3.
Salt stress impairs reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems, and causes oxidative damage to plants. Up-regulation of the antioxidant and glyoxalase systems provides protection against NaCl-induced oxidative damage in plants. Thiol–disulfide contents, glutathione content and its associated enzyme activities involved in the antioxidant defense and glyoxalase systems, and protein carbonylation in tobacco Bright Yellow-2 cells grown in suspension culture were investigated to assess the protection offered by proline and glycinebetaine against salt stress. Salt stress increased protein carbonylation, contents of thiol, disulfide, reduced (GSH) and oxidized (GSSG) forms of glutathione, and the activity of glutathione-S-transferase and glyoxalase II enzymes, but decreased redox state of both thiol–disulfide and glutathione, and the activity of glutathione peroxidase and glyoxalase I enzymes involved in the ROS and MG detoxification systems. Exogenous application of proline or glycinebetaine resulted in a reduction of protein carbonylation, and in an increase in glutathione redox state and activity of glutathione peroxidase, glutathione-S-transferase and glyoxalase I under salt stress. Neither proline nor glycinebetaine, however, had any direct protective effect on NaCl-induced GSH-associated enzyme activities. The present study, therefore, suggests that both proline and glycinebetaine provide a protective action against NaCl-induced oxidative damage by reducing protein carbonylation, and enhancing antioxidant defense and MG detoxification systems.  相似文献   

4.
The main aim of the study was to determine the role of cerium in the amelioration of calcium-deficiency effects in spinach plants. Spinach plants were cultivated in Hoagland’s solution. They were subjected to calcium-deficiency and to cerium chloride administered in the calcium-present Hoagland’s media and calcium-deficient Hoagland’s media. Within 3weeks, young leaves developed distinct calcium-deficient symptoms, and plant growth significantly inhibited to calcium deprivation as would be expected; cerium-treated groups grown in the same conditions did not develop calcium-deficient symptoms; fresh weight, dry weight and chlorophyll content of spinach plants were increased by 35.9, 45 and 64.05% compared to those of plants cultivated in calcium-deficient media. In addition, calcium deprivation in spinach plants caused the reduction of photosynthetic rate, oxygen evolution rate and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. The reduction of activities of nitrate reductase, glutamate dehydrogenase, glutamate synthase and glutamic-pyruvic transaminase was observed under calcium-deficient media. However, cerium treatment under calcium-deficient media could significantly improve photosynthesis and nitrogen metabolism of spinach plants. This is viewed as evidence that cerium added to calcium-deficient media in the spinach plants could substitute for calcium and improve spinach growth.  相似文献   

5.
Plants can be contaminated with cyanobacterial toxins during spray irrigation of lake water containing toxic cyanobacteria. Here, long-term effects of cyanobacterial crude extract (containing microcystin-LR) on the growth and physiology of different spinach (Spinacia oleracea) variants under semifield conditions were investigated. Changes in antioxidative enzyme activities, and in glutathione, ascorbate and tocopherol contents were investigated to assess the reaction of the antioxidative defence systems in spinach to toxin exposure. In addition to severe morphological effects, such as growth inhibition and chlorosis, the generation of oxidative stress was observed at the cellular level. In response to the negative effects of oxidative stress, plants stimulated an antioxidative system consisting of an enzyme network with superoxide dismutases, peroxidases, catalases, glutathione S-transferases and glutathione reductases, as well as a set of low-molecular-weight antioxidants, including glutathione, ascorbate and tocopherols. Exposure of spinach to cyanobacterial crude extract affected germination, growth and morphology, as well as antioxidative response parameters. Different variants of the same plant reacted in different ways to certain toxicants.  相似文献   

6.
Ex vitro transfer is often stressful for in vitro grown plantlets. Water stress and photoinhibition, often accompanying the acclimatization of in vitro grown plantlets to ex vitro conditions, are probably the main factors promoting production of reactive oxygen species (ROS) and in consequence oxidative stress. The extent of the damaging effects of ROS depends on the effectiveness of the antioxidative systems which include low molecular mass antioxidants (ascorbate, glutathione, tocopherols, carotenoids, phenols) and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase). This review is focused on ROS production and development of antioxidative system during in vitro growth and their further changes during ex vitro transfer.  相似文献   

7.
Imbibitional heat and chilling stress caused disruption of redox-homeostasis and oxidative damage to newly assembled membrane system by aggravating membrane lipid peroxidation and protein oxidation [measured in terms of thiobarbituric acid reactive substances (TBARS), free carbonyl content (C=O groups) and membrane protein thiol level (MPTL)] along with concomitant increase in accumulation of reactive oxygen species (superoxide and hydrogen peroxide) and significant reduction of antioxidative defense (assessed in terms of total thiol content and activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in both the salt sensitive (Ratna) and resistant (SR 26B) germinating tissues of rice cultivars. When compared, salt resistant cultivar SR 26B found to suffer significantly less oxidative membrane damage as compared to salt sensitive cultivar Ratna. Treatment with low titer of hydrogen peroxide caused significant reversal in oxidative damages to the newly assembled membrane system imposed by imbibitional heat and chilling stress (evident from the data of TBARS, C=O, MPTL, ROS accumulation, membrane permeability status, membrane injury index and oxidative stress index) in seedlings of both the cultivars of rice (Ratna and SR 26B). Imbibitional H2O2 pretreatment also caused up-regulation of antioxidative defense (activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and total thiol content) in the heat and chilling stress-raised seedlings of experimental rice cultivars. When the parameters of early growth performances were assessed (in terms of relative growth index, biomass accumulation and vigor index), it clearly exhibited significant improvement of early growth performances of both the rice cultivars. Better response towards H2O2-mediated acclamatory performances and restoration of redox- homeostasis under extremes of temperature were noticed in salt sensitive rice cultivar Ratna compared to salt resistant SR 26B. Taken as a whole, the result suggests the significance of the role of ‘inductive pulse’ of H2O2 in acclimatizing adverse temperature stress by restoration of redox-homeostasis and mitigation of oxidative membrane protein and lipid damages during the recovery phase of post-germination event.  相似文献   

8.
Extremes of temperature (both heat and chilling) during early inbibitional phase of germination caused disruption of redox-homeostasis by increasing accumulation of reactive oxygen species (superoxide and hydrogen peroxide) and significant reduction of antioxidative defense (assessed in terms of total thiol content and activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in germinating tissues of rice (Oryza sativa L., cultivar Ratna). Imbibitional heat and chilling stress also induced oxidative damage to newly assembled membrane system by aggravating membrane lipid peroxidation and protein oxidation [measured in terms of thiobarbituric acid reactive substances (TBARS), free carbonyl content (C = O groups) and membrane protein thiol level (MPTL)]. Treatment with standardized low titer hydrogen peroxide during early imbibitional phase of germination caused significant reversal in oxidative damages to the newly assembled membrane system imposed by heat and chilling stress [evident from the data of TBARS, C = O, MPTL, ROS accumulation, membrane permeability status, membrane injury index and oxidative stress index] in seedlings of experimental rice cultivar. Imbibitional H2O2 pretreatment also caused up-regulation of antioxidative defense (activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and total thiol content) in the heat and chilling stress-raised rice seedlings. When the parameters of early growth performances were assessed (in terms of relative growth index, biomass accumulation, relative germination performance, mean daily germination, T50 value), it clearly exhibited significant improvement of early growth performances of the experimental rice cultivar. The result proposes that an ‘inductive pulse’ of H2O2 is required to switch on some stress acclimatory metabolism through which plant restores redox homeostasis and prevents or repairs oxidative damages to newly assembled membrane system caused by unfavorable environmental cues during early germination to the rice cultivar Ratna. The importance of mitigating oxidative damages to membrane lipid and protein necessary for post-germinative growth under extremes of temperature is also suggested.  相似文献   

9.
In excess, iron can induce the production and accumulation of reactive oxygen species (ROS), causing oxidative stress. The objective of this work was to evaluate the impact of toxic concentrations of iron (Fe) on the antioxidative metabolism of young Eugenia uniflora plants. Forty-five-day-old plants grown in Hoagland nutrient solution, pH 5.0, were treated with three Fe concentrations, in the form of FeEDTA, during three periods of time. At the end of the treatment, the plants were harvested and relative growth rate, iron content, lipid peroxidation and enzymes and metabolites of the antioxidative metabolism were determined. Iron-treated plants showed higher iron contents, reduced relative growth rates and iron toxicity symptoms in both leaves and roots. There was an increase in lipid peroxidation with increasing Fe, only in the leaves. The enzymatic activities of superoxide dismutase (SOD) and glutathione reductase (GR) increased with increasing Fe concentration and treatment exposure time. The activities of catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APX) also increased with increasing Fe concentration but decreased with increasing treatment exposure time. Glutathione peroxidase activity (GPX) decreased with increasing Fe concentration and exposure time. The ascorbate (AA) and reduced glutathione (GSH) contents and the AA/DHA and GSH/GSSG ratios, in general, increased with increasing Fe concentration and treatment exposure time. The results indicate that under toxic levels of Fe, young E. uniflora plants suffer increased oxidative stress, which is ameliorated through changes in the activities of antioxidative enzymes and in the contents of the antioxidants AA and GSH.  相似文献   

10.
The relationship between potassium deficiency and the antioxidative defense system has received little study. The aim of this work was to study the induction of oxidative stress in response to K(+) deficiency and the putative role of antioxidants. The tomato plants were grown in hydroponic systems to determine the role of reactive oxygen species (ROS) in the root response to potassium deprivation. Parameters of oxidative stress (malondialdehyde and hydrogen peroxide (H(2)O(2)) concentration), activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)) and antioxidant molecules (ascorbate (ASC) and glutathione) were investigated. H(2)O(2) was subcellularly located by laser confocal microscopy after potassium starvation in roots. During the first 24h, H(2)O(2) induced the cascade of the cellular response to low potassium, and ROS accumulation was located mainly in epidermal cells in the elongation zone and meristematic cells of the root tip and the epidermal cells of the mature zones of potassium starved roots. The activity of the antioxidative enzymes SOD, peroxidase and APX in potassium deprivation significantly increased, whereas CAT and DHAR activity was significantly depressed in the potassium starvation treatment compared to controls. GR did not show significant differences between control and potassium starvation treatments. Based on these results, we put forward the hypothesis that antioxidant molecule accumulations probably scavenge H(2)O(2) and might be regenerated by the ASC-glutathione cycle enzymes, such as DHAR and GR.  相似文献   

11.
Manganese (Mn) is an essential element for plant growth but in excess, specially in acidic soils, it can become phytotoxic. In order to investigate whether oxidative stress is associated with the expression of Mn toxicity during early seedling establishment of rice plants, we examined the changes in the level of reactive oxygen species (ROS), oxidative stress induced an alteration in the level of non-enzymic antioxidants and activities of antioxidative enzymes in rice seedlings grown in sand cultures containing 3 and 6 mM MnCl2. Mn treatment inhibited growth of rice seedlings, the metal increasingly accumulated in roots and shoots and caused damage to membranes. Mn treated plants showed increased generation of superoxide anion (O2 .−), elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) and decline in protein thiol. The level of nonprotein thiol, however, increased due to Mn treatment. A decline in contents of reduced ascorbate (AsA) and glutathione (GSH) as well as decline in ratios of their reduced to oxidize forms was observed in Mn-treated seedlings. The activities of antioxidative enzymes superoxide dismutase (SOD) and its isoforms Mn SOD, Cu/Zn SOD, Fe SOD as well as guaiacol peroxidase (GPX) increased in the seedlings due to Mn treatment however, catalase (CAT) activity increased in 10 days old seedlings but it declined by 20 days under Mn treatment. The enzymes of Halliwell-Asada cycle, ascorbate peroxidase (APX) monodehydoascorbate reductase (MDHAR), dehyroascorbate reductase (DHAR) and glutathione reductase (GR) increased significantly in Mn treated seedlings over controls. Results suggest that in rice seedlings excess Mn induces oxidative stress, imbalances the levels of antioxidants and the antioxidative enzymes SOD, GPX, APX and GR appear to play an important role in scavenging ROS and withstanding oxidative stress induced by Mn.  相似文献   

12.
The objective of this study was to investigate the influence of exogenous 24-epibrassinolide (EBR) on the substances involved in antioxidation and osmoregulation responses of young grape plants under chilling stress. The grapevine leaves were sprayed with 0 (control), 0.05, 0.10 or 0.15 mg/L of 24-epibrassinolide and then exposed to 4 and 0 °C for 24 h, respectively. The EBR treatment significantly enhanced the activities of antioxidative enzymes such as catalase, superoxide dismutase, peroxidase and ascorbate peroxidase in the plant leaves compared with the control. The contents of ascorbic acid and reduced glutathione increased after the EBR treatment, while reactive oxygen species (ROS) and lipid peroxidation were inhibited. In addition, the EBR treatment also greatly increased the contents of free proline, soluble protein, and soluble sugar. These results indicated that exogenous EBR treatment could enhance the antioxidation defense system and reduce oxidative damage caused by ROS and lipid oxidation in the young grapevine leaves. Meanwhile, it was found that the treatment could also increase the osmoregulation substance content in the grapevine leaves and improve their resistance against chilling stress.  相似文献   

13.
The intracellular levels of antioxidant and free radical scavenging enzymes are gradually altered during the aging process. An age-dependent increase of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The current study examined the effects of L-malate on oxidative stress and antioxidative defenses in the liver and heart of aged rats. Sprague-Dawley male rats were randomly divided into four groups, each group consisting of 6 animals. Group Ia and Group IIa were young and aged control rats. Group Ib and Group IIb were young and aged rats treated with L-malate (210 mg/kg body weight per day). L-malate was orally administrated via intragastric canula for 30 days, then the rats were sacrificed and the liver and heart were removed to determine the oxidant production, lipid peroxidation and antioxidative defenses of young and aged rats. Dietary L-malate reduced the accumulation of reactive oxygen species (ROS) and significantly decreased the level of lipid peroxidation in the liver and heart of the aged rats. Accordingly, L-malate was found to enhance the antioxidative defense system with an increased activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased glutathione (GSH) levels in the liver of aged rats, a phenomenon not observed in the heart of aged rats. Our data indicate that oxidative stress was reversed and the antioxidative defense system was strengthened by dietary supplementation with L-malate.  相似文献   

14.
Oxidative damage involved in the pathogenesis of many diseases, such as cardiovascular disease, cancer and diabetics. The antioxidant defense system plays an important role in protecting body from oxidative damage. Numerous studies have been shown that a single vitamin or mineral supplementation has the beneficial effect on the antioxidant defense system. However, the overall combined effect of multinutrient supplementation on antioxidant defense system remains to be clarified. In the present double blind, placebo-controlled study, the antioxidative defense system was measured in 34 healthy subjects before and after multinutrient supplementation. Plasma vitamin C, E and β-carotene, erythrocyte vitamin E, as well as whole blood selenium all showed increase at 5 weeks of supplementation. The activities of catalase (CAT) and glutathione peroxidase (GPX), but not superoxide dismutase (SOD), as well as GSH level were significantly increased at 16 weeks of supplementation. Moreover, the resistance of erythrocytes to 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidation was elevated at 5 weeks after supplementation. These results clearly demonstrated that short-term supplementation (16 weeks) with multinutrient could markedly improve antioxidative vitamin status and enzymatic activities. These improvements also led to the reduction of RBC susceptibility to free radial peroxidation.  相似文献   

15.
ALA is a key precursor in the biosynthesis of porphyrins such as chlorophyll and heme, and was found to induce temporary elevations in the photosynthesis rate, APX, and CAT; furthermore, treatment with ALA at a low concentration might be correlated to the increase of NaCl tolerance of spinach plants. The photosynthetic rate and the levels of active oxygen-scavenging system in the 3rd leaf of spinach (Spinacia oleracea) plants grown by foliar treatment with 0, 0.18, 0.60 and 1.80 mmol/L 5-aminolevulinic acid under 50 and 100 mmol/L NaCl were analyzed. Plants treated with 0.60 and 1.80 mmol/L ALA showed significant increases in the photosynthetic rate at 50 and 100 mmol/L NaCl, while that of 0.18 mmol/L ALA did not show any changes at 50 mmol/L NaCl and a gradual decrease at 100 mmol/L NaCl. In contrast, the rate with 0 mmol/L ALA showed reduction at both concentrations of NaCl. The increase of hydrogen peroxide content by treatment with 0.60 and 1.80 mmol/L ALA were more controlled than that of 0 mmol/L ALA under both NaCl conditions. These ALA-treated spinach leaves also exhibited a lower oxidized/reduced ascorbate acid ratio and a higher reduced/oxidized glutathione ratio than the 0 mmol/L-treated spinach leaves when grown at both NaCl conditions. With regard to the antioxidant enzyme activities in the leaves, ascorbate peroxidase, catalase, and glutathione reductase activities were enhanced remarkably, most notably at day 3, by treatment with 0.60 and 1.80 mmol/L ALA under both NaCl conditions in comparison to that of 0 and 0.18 mmol/L ALA. These data indicate that the protection against oxidative damage by higher levels of antioxidants and enzyme activities, and by a more active ascorbate-glutathione cycle related to the increase of the photosynthesis rate, could be involved in the increased salt tolerance observed in spinach by treatment with 0.60 to 1.80 mmol/L ALA with NaCl.  相似文献   

16.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

17.
The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120 mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.  相似文献   

18.
The sporophyte and gametophyte of Pteris vittata are arsenic hyperaccumulators, however, little is known about the mechanism by which the gametophyte deals with this toxic element. An in vitro system (spores grown in arsenic amended nutrient media) was used to investigate the impact of arsenic on growth of the gametophyte and the role of antioxidative systems in combating As-stress. When mature spores of P. vittata were grown in medium amended with 0-50 mg kg(-1) of arsenic (as arsenate), the arsenic concentration in the gametophyte increased, with increasing arsenate in the media, but did not inhibit the spore germination and biomass development. Increases in the level of antioxidant enzymes, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione-Stransferase) and of ascorbic acid and glutathione probably enabled the gametophyte to withstand the oxidative stress caused by arsenate.  相似文献   

19.
NADPH is an important molecule in the redox balance of the cell. In this paper, using olive tissue cultures as a model of the function of the NADPH-generating dehydrogenases in the mechanism of oxidative stress induced by severe salinity conditions was studied. When olive (Olea europaea) plants were grown with 200 mM NaCl, a 40% reduction in leaf fresh weight was produced. The content of non-enzymatic antioxidants such as ascorbate and glutathione was diminished between 20% to 39%, whereas the H2O2 content was increased threefold. In contrast, the analysis of the activity and protein contents of the main antioxidative enzymes showed a significant increase of catalase, superoxide dismutase and glutathione reductase. Overall, these changes strongly suggests that NaCl induces oxidative stress in olive plants. On the other hand, while the content of glucose-6-phosphate was increased almost eightfold in leaves of plants grown under salt stress, the content of NAD(P)H (reduced and oxided forms) did not show significant variations. Under salt stress conditions, the activity and protein contents of the main NADPH-recycling enzymes, glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (ICDH), malic enzyme (ME) and ferrodoxin-NADP reductase (FNR) showed an enhancement of 30-50%. In leaves of olive plants grown with 200 mM NaCl, analysis of G6PDH by immunocytochemistry and confocal laser scanning microscopy showed a general increase of this protein in epidermis, palisade and spongy mesophyll cells. These results indicate that in olive plants, salinity causes reactive oxygen species (ROS)-mediated oxidative stress, and plants respond to this situation by inducing different antioxidative enzymes, especially the NADPH-producing dehydrogenases in order to recycle NADPH necessary for the protection against oxidative damages. These NADP-dehydrogenases appear to be key antioxidative enzymes in olive plants under salt stress conditions.  相似文献   

20.
Using two barley (Hordeum vulgare) cultivars (cvs. Tokak and Hamidiye) nutrient solution experiments were conducted in order to study the genotypic variation in tolerance to Cd toxicity based on (i) development of leaf symptoms, (ii) decreases in dry matter production, (iii) Cd concentration and (iv) changes in antioxidative defense system in leaves (i.e., superoxide dismutase, ascorbate peroxidase, glutathione reductase, catalase, ascorbic acid and non-protein SH-groups). Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 15, 30, 60 and 120 micromol/L Cd) for different time periods. Of the barley cultivars Hamidiye was particularly sensitive to Cd as judged by the severity and earlier development of Cd toxicity symptoms on leaves. Within 48 h of Cd application Hamidiye rapidly developed severe leaf Cd toxicity symptoms whereas in Tokak the leaf symptoms appeared only slightly. Hamidiye also tended to show more decrease in growth caused by Cd supply when compared to Tokak. The differences in sensitivity to Cd between Tokak and Hamidiye were not related to Cd concentrations in roots and shoots or Cd accumulation per plant. With the exception of catalase, activities of the enzymes involved in detoxification of reactive oxygen species (ROS) were markedly enhanced in Hamidiye by increasing Cd supply. By contrast, in Tokak there was either only a slight increase or no change in the activities of the antioxidative enzymes. Similarly, levels of ascorbic acid and especially non-protein SH-groups were increased in Hamidiye by Cd supply, but not affected in Tokak. The results indicate the existence of a large genotypic variation between barley cultivars for Cd tolerance. The differential Cd tolerance found in the barley cultivars was not related to uptake or accumulation of Cd in plants, indicating importance of internal mechanisms in expression of differential Cd tolerance in barley. As a response to increasing Cd supply particular increases in antioxidative mechanisms in the Cd-sensitive barley cultivar Hamidiye suggest that the high Cd sensitivity of Hamidiye is related to enhanced production and oxidative damage of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号