首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
QT-RR hysteresis is characterized by longer QT intervals at a given RR interval while heart rates are increasing during exercise and shorter QT intervals at the same RR interval while heart rates are decreasing during recovery. It has been attributed to a lagging QT response to different directional changes in RR interval during exercise and recovery. Twenty control subjects (8 males, age 51 ± 6 yr), 16 subjects with type 2 diabetes (12 males, age 56 ± 8 yr), 71 subjects with coronary artery disease (CAD) and preserved left ventricular ejection fraction (LVEF) (≥50%) (51 males, age 59 ± 12 yr), and 17 CAD subjects with depressed LVEF (<50%) (13 males, age 57 ± 10 yr) underwent two 16-min exercise tests followed by recovery. In session 2, parasympathetic blockade with atropine (0.04 mg/kg) was achieved at end exercise. QT-RR hysteresis was quantified as: 1) the area bounded by the QT-RR relationships for exercise and recovery in the range of the minimum RR interval at peak exercise to the minimum RR interval + 100 ms and 2) the difference in QT interval duration between exercise and recovery at the minimum RR interval achieved during peak exercise plus 50 ms (ΔQT). The effect of parasympathetic blockade was assessed by substituting the QT-RR relationship after parasympathetic blockade. QT-RR hysteresis was positive in all groups at baseline and reversed by parasympathetic blockade (P < 0.01). We conclude that QT-RR hysteresis is not caused by different directional changes in RR interval during exercise and recovery. Instead, it is predominantly mediated by differential autonomic nervous system effects as the heart rate increases during exercise vs. as it decreases during recovery.  相似文献   

2.
Recently, it was demonstrated that the QT-RR relationship pattern varies significantly among healthy individuals. We compared the intra- and interindividual variations of the QT-RR relationship. Twenty-four-hour 12-lead digital electrocardiograms (ECGs; SEER MC, GE Marquette; 10-s ECG recorded every 30 s) were obtained at baseline and after 24 h, 1 wk, and 1 mo in 75 healthy subjects (42 women, 33 men, age 27.9 +/- 9.6 vs. 26.8 +/- 7.5 yr, P = not significant). QT interval was measured automatically in each ECG by six different algorithms, and the mean of the six measurements was analyzed. In each recording of each individual, QT-RR relationship was assessed by 10 different regression models including linear (QT = beta + alpha x RR) and parabolic (QT = beta x RR(alpha)) models. Standard deviations (SDs) of regression parameters alpha and beta of consecutive recordings of each individual were compared with SD of the individual means. Intrasubject stability and interindividual variability were further tested by ANOVA. With all models, intraindividual SDs of the regression parameters were highly significantly smaller than SD of individual means (P < 10(-5)-10(-9)). The intrasubject stability was further confirmed by ANOVA (P < 10(-19)-10(-30)). The QT-RR relationship exhibits substantial intersubject variability as well as a high intrasubject stability. This has practical implications for a precise estimation of the heart rate-corrected QT interval in which optimized subject-specific rate correction formulas should be used.  相似文献   

3.
This study evaluated the contributions of sympathetic and parasympathetic modulation to heart rate variability during situations in which vagal and sympathetic tone predominated. In a placebo-controlled, randomized, double blind blockade study, six young healthy male individuals received propranolol (0.2 mg x kg(-1)), atropine (0.04 mg x kg(-1)), propranolol plus atropine, or placebo infusions over 4 days. Time-domain indices were calculated during 40 min of rest and 20 min of exercise at 70% of maximal exercise intensity. Spectrum analysis, using fast Fourier transformation, was also performed at rest and during the exercise. The time-domain indices standard deviation of R-R intervals, mean of the standard deviations of all R-R intervals for all 5-min segments, percentage of number of pairs of adjacent R-R intervals differing by more than 50 ms, and square root of the mean of the sum of squares of differences between adjacent R-R intervals were reduced after atropine and propranolol plus atropine. Propranolol alone caused no appreciable change in any of the time-domain indices. At rest, all spectrum components were similar after placebo and propranolol infusions, but following parasympathetic and double autonomic blockade there was a reduction in all components of the spectrum analysis, except for the low:high ratio. During exercise, partial and double blockade did not change significantly any of the spectrum components. Thus, time and frequency-domain indices of heart rate variability were able to detect vagal activity, but could not detect sympathetic activity. During exercise, spectrum analysis is not capable of evaluating autonomic modulation of heart rate.  相似文献   

4.
Depressed parasympathetic tone is associated with an increased risk of sudden cardiac death. Exercise and the postexercise recovery period, which are associated with parasympathetic withdrawal, are high risk periods for sudden death. However, parasympathetic effects on cardiac electrophysiology during exercise and recovery have not been described. Electrophysiology studies were performed using noninvasive programmed stimulation (NIPS) in nine subjects (age 59 +/- 18 yr) with implanted dual-chamber devices and normal left ventricular function during multiple bicycle exercise sessions. NIPS was performed at rest, during exercise, and in the early recovery period both before and after parasympathetic blockade with atropine. Parasympathetic effect was defined as the value of the parameter of interest in the absence of atropine minus the value of the parameter in the presence of atropine. During exercise, sinus cycle length, atrioventricular (AV) block cycle length, AV interval, and ventricular effective refractory period shortened; in recovery, the values were intermediate between the rest and exercise values (P < 0.0001 by ANOVA). Parasympathetic effects on sinus cycle length, AV block cycle length, AV interval, and ventricular effective refractory period were 247 +/- 140, 58 +/- 20, 76 +/- 20, and 8.6 +/- 7.5 ms at rest, 106 +/- 20, 37 +/- 14, 24 +/- 13, and 2.6 +/- 7.8 ms during exercise, and 209 +/- 114, 50 +/- 23, 35 +/- 21, and 9.5 +/- 11.8 ms during recovery, respectively. There was poor correlation among the parasympathetic effects noted at the sinus node, AV node, and ventricle. Further work evaluating parasympathetic effects on cardiac electrophysiology during exercise and recovery in patients with heart disease is required to elucidate its role in modulating the risk of sudden cardiac death noted at these times.  相似文献   

5.
There is an increased risk of cardiac events after exercise, which may, in part, be mediated by the sympathoexcitation that accompanies exercise. The duration and extent of this sympathoexcitation following moderate exercise is unknown, particularly in those with coronary artery disease (CAD). Twenty control subjects (mean age, 51 years) and 89 subjects with CAD (mean age, 58 years) underwent two 16-min bicycle exercise sessions followed by 30-45 min of recovery. Session 1 was performed under physiological conditions to peak workloads of 50-100 W. In session 2, parasympathetic blockade with atropine (0.04 mg/kg) was achieved at end exercise at the same workload as session 1. RR interval was continually recorded, and plasma catecholamines were measured at rest and selected times during exercise and recovery. Parasympathetic effect, measured as the difference in RR interval with and without atropine, did not differ between controls and CAD subjects in recovery. At 30 and 45 min of recovery, RR intervals were 12% and 9%, respectively, shorter than at rest. At 30 and 45 min of recovery, plasma norepinephrine levels were 15% and 12%, respectively, higher than at rest. A brief period of moderate exercise is associated with a prolonged period of sympathoexcitation extending >45 min into recovery and is quantitatively similar among control subjects and subjects with CAD, with or without left ventricular dysfunction. Parasympathetic reactivation occurs early after exercise and is also surprisingly quantitatively similar in controls and subjects with CAD. The role of these autonomic changes in precipitating cardiac events requires further evaluation.  相似文献   

6.
The objective of this study was to evaluate whether heart rate variability (HRV) can be used as an index of parasympathetic reactivation after exercise. Heart rate recovery after exercise has recently been shown to have prognostic significance and has been postulated to be related to abnormal recovery of parasympathetic tone. Ten normal subjects [5 men and 5 women; age 33 +/- 5 yr (mean +/- SE)] exercised to their maximum capacity, and 12 subjects (10 men and 2 women; age 61 +/- 10 yr) with coronary artery disease exercised for 16 min on two separate occasions, once in the absence of atropine and once with atropine (0.04 mg/kg) administered during exercise. The root mean square residual (RMS), which measures the deviation of the R-R intervals from a straight line, as well as the standard deviation (SD) and the root mean square successive difference of the R-R intervals (MSSD), were measured on successive 15-, 30-, and 60-s segments of a 5-min ECG obtained immediately after exercise. In recovery, the R-R interval was shorter with atropine (P < 0.0001). Without atropine, HRV, as measured by the MSSD and RMS, increased early in recovery from 4.1 +/- 0.4 and 3.7 +/- 0.4 ms in the first 15 s to 7.2 +/- 1.0 and 7.4 +/- 0.9 ms after 1 min, respectively (P < 0.0001). RMS (range 1.7-2.1 ms) and MSSD were less with atropine (P < 0.0001). RMS remained flat throughout recovery, whereas MSSD showed some decline over time from 3.0 to 2.2 ms (P < 0.002). RMS and MSSD were both directly related (r(2) = 0.47 and 0.56, respectively; P < 0.0001) to parasympathetic effect, defined as the difference in R-R interval without and with atropine. In conclusion, RMS and MSSD are parameters of HRV that can be used in the postexercise recovery period as indexes of parasympathetic reactivation after exercise. These tools may improve our understanding of parasympathetic reactivation after exercise and the prognostic significance of heart rate recovery.  相似文献   

7.
The dependence on heart rate of the QT interval has been investigated for many years and several mathematical formulae have been proposed to describe the QT interval/heart rate (or QT interval/RR interval) relationship. While the most popular is Bazett's formula, it overcorrects the QT interval at high heart rates and under-corrects it at slow heart rates. This formulae and many others similar ones, do not accurately describe the natural behaviour of the QT interval. The QT interval/RR interval relationship is generally described as QT dynamics. In recent years, several methods of its assessment have been proposed, the most popular of which is linear regression. An increased steepness of the linear QT/RR slope correlates with the risk of arrhythmic death following myocardial infarction. It has also been demonstrated that the QT interval adapts to heart rate changes with a delay (QT hysteresis) and that QT dynamics parameters vary over time. New methods of QT dynamics assessment that take into account these phenomena have been proposed. Using these methods, changes in QT dynamics have been observed in patients with advanced heart failure, and during morning hours in patients with ischemic heart disease and history of cardiac arrest. The assessment of QT dynamics is a new and promising tool for identifying patients at increased risk of arrhythmic events and for studying the effect of drugs on ventricular repolarisation.  相似文献   

8.
Shear stress-dependent nitric oxide (NO) formation prevents immoderate vascular constriction. We examined whether shear stress-dependent NO formation limits exercise-induced coronary artery constriction after beta-adrenergic receptor blockade in dogs. Control exercise led to increases (P < 0.01) in coronary blood flow (CBF) by 38 +/- 5 ml/min from 41 +/- 5 ml/min and in the external diameter of epicardial coronary arteries (CD) by 0.24 +/- 0.03 mm from 3.33 +/- 0.20 mm. CD and shear stress were linearly related. After propranolol, CD fell (P < 0.01) during exercise (0.08 +/- 0.03 from 3.23 +/- 0.19 mm), and the slope of the relationship between CD and shear stress was reduced (P < 0.01). This slope was not further altered by the additional blockade of NO formation. In propranolol-treated resting dogs, flow-dependent effects of intracoronary adenosine to mimic exercise-induced increases in shear stress (after propranolol) led to increases (P < 0.01) in CD (0.09 +/- 0.02 from 3.68 +/- 0.27 mm). Thus both shear stress-dependent NO formation and beta-adrenergic receptor activation are required to cause CD dilation during exercise. Suppression of beta-adrenergic receptor activation leads to impaired shear stress-dependent NO formation and allows alpha-adrenergic constriction to become dominant.  相似文献   

9.
The establishment of a new rate-correction method for the QT interval is presented for long-term telemetry ECG recording in free-moving beagle dogs. First, in order to define the QT-RR relation to derive the correction formula, the diurnal variations of the QT and RR intervals and the influencing factors were analyzed, and the QT-RR regression coefficient beta was estimated under various conditions: steady and non-steady states of animal, light and dark periods, and over 24 h. In the results, the diurnal rhythm of the QT interval was synchronized with the RR interval reflecting the physical and emotional states of the animal. The coefficient beta had considerable variation during the day: beta; 0.276 +/- 0.052 (maximum to minimum: 0.495 to 0.153). Thus, it was considered that the ideal rate-correction technique for telemetry ECG requires the selection of a flexible coefficient beta adjusted to the condition of the measurement. Therefore, rate-correction utilizing analysis of covariance estimating the coefficient beta for each dog, was compared with previously proposed formulas which fix the rate-correction coefficient, based on the capacity to dissociate the effects of heart rate on the QT interval. This was then tested by the levels of discrimination apparent in the QT prolongation caused by a class III antiarrhythmic drug, which ranked the formulas on the levels of correction achieved as follows: covariance adjustment > Matsunaga > Van de Water > Bazett. Thus, the rate-correction method utilizing analysis of covariance is proven adequate for data from telemetry ECG recordings.  相似文献   

10.
Autonomic regulation of subsidiary atrial pacemakers during exercise   总被引:2,自引:0,他引:2  
Cardiac responses to graded treadmill exercise were compared in conscious dogs before and after excision of the sinoatrial node (SAN) and adjacent tissue along the sulcus terminalis. The chronotropic and dromotropic responses to dynamic exercise were compared with and without selective muscarinic (atropine) and/or beta-adrenergic (timolol) blockade. With the SAN intact, cardiac acceleration was prompt during onset of exercise and in proportion to work intensity. Immediately after SAN excision (1-7 days), pacemaker activity exhibited marked instability in rate and pacemaker location, with rapid shifts between atrial and junctional foci. Soon thereafter (1-2 wk), subsidiary atrial pacemakers (SAPs) assumed the primary pacemaker function. Although the SAP foci demonstrated stable heart rates and atrioventricular (AV) intervals at rest and during exercise, heart rates at rest and during steady-state exercise were reduced 34% from corresponding levels in the SAN-intact state, both with and without selective autonomic blockade. For control of dromotropic function, animals with SAP foci showed pronounced shortening in AV interval in conjunction with exercise that was further exacerbated by pretreatment with atropine. Eight weeks after excision of the primary SAN pacemakers, direct electrophysiological mapping localized the SAP foci to either the inferior right atrium along the sulcus terminalis or the dorsal cranial right atrium (in or near Bachmann's bundle). Animals with SAPs localized to the inferior right atrium had a more marked suppression in heart rate with a corresponding greater decrease in AV interval during exercise than dogs with SAP foci identified within the dorsal cranial right atrium.  相似文献   

11.
The effects of beta-adrenergic blockade upon myocardial blood flow and oxygen balance during exercise were evaluated in eight conscious dogs, instrumented for chronic measurements of coronary blood flow, left ventricular pressure, aortic blood pressure, heart rate, and sampling of arterial and coronary sinus venous blood. The administration of propranolol (1.5 mg/kg iv) produced a decrease in heart rate, peak left ventricular (LV) dP/dt, LV (dP/dt/P, and an increase in LV end-diastolic pressure during exercise. Mean coronary blood flow and myocardial oxygen consumption were lower after propranolol than at the same exercise intensity in control conditions. The oxygen delivery-to-oxygen consumption ratio and the coronary sinus oxygen content were also significantly lower. It is concluded that the relationship between myocardial oxygen supply and demand is modified during exercise after propranolol, so that a given level of myocardial oxygen consumption is achieved with a proportionally lower myocardial blood flow and a higher oxygen extraction.  相似文献   

12.
This study was designed to validate the measures of heart period variability for assessing of autonomic nervous system control in calves. Eight calves received an injection of either 0.5 mg/kg atenolol (sympathetic tone blockade), 0.2 mg/kg atropine sulfate (parasympathetic tone blockade), 0.5 mg/kg atenolol + 0.2 mg/kg atropine sulfate (double autonomic blockade) or saline. In the time-domain, we calculated the mean instantaneous heart rate (HR), mean of RR intervals (MeanRR), standard deviation of RR intervals (SDRR) and that of the difference between adjacent intervals (RMSSD). In the frequency-domain, the power of the spectral band 0-1 Hz (TPW), the power of the 0-0.15 Hz band (LF), that of the 0.15-1 Hz band (HF), and the LF/HF ratio were considered. The net vago-sympathetic effect (VSE) was calculated as the ratio of MeanRR in a defined situation to MeanRR during the double blockade. Atenolol injection had no effect on cardiac activity, whereas atropine induced large modifications which were moderated when atenolol was administered at the same time. VSE, HR, MeanRR and RMSSD were found to be valid indicators of the parasympathetic tone of calves because of large variations due to the drug and low individual variations. No measure reflected the sympathetic tone.  相似文献   

13.
Adrenergic and cholinergic tone on the cardiovascular system of embryonic chickens was determined during days 12, 15, 19, 20, and 21 of development. Administration of the muscarinic antagonist atropine (1 mg/kg) resulted in no significant change in heart rate or arterial pressure at any developmental age. In addition, the general cardiovascular depressive effects of hypoxia were unaltered by pretreatment with atropine. In addition, the ganglionic blocking agent hexamethonium (25 mg/kg) did not induce changes in heart rate. The beta-adrenergic antagonist propranolol (3 mg/kg) induced a bradycardia of similar magnitude on all days studied, with a transient hypertensive action on days 19-20, indicating the existence of an important cardiac and vascular beta-adrenergic tone. Injections of the alpha-adrenergic antagonists prazosin or phentolamine (1 mg/kg) reduced arterial pressure significantly on all days of incubation studied. Collectively, the data indicate that embryonic chickens rely primarily on adrenergic control of cardiovascular function, with no contribution from the parasympathetic nervous system.  相似文献   

14.
The changes in the response of adrenergic receptors alpha and beta in the blood vessels in the working muscles in a hindlimb in cats were studied after intra-arterial administration of noradrenaline, isoprenaline and during electric stimulation of the sympathetic trunk. The experiments were carried out during alpha-adrenergic receptors blockade with dihydroergotamine (0.3 mg/kg) beta-adrenergic receptors blockade with propranolol (1 mg/kg) and blockade of acetylcholine M receptors with atropine (0.5 mg/kg). The investigations were performed at rest, during exercise (electric stimulation of the sciatic nerve) and after the exercise. The following results deserve attention: 1) beta-adrenergic receptors blockade reduced significantly the alpha-adrenolytic effect of exercise restoring the ability of blood vessel to constriction in response to noradrenaline; 2) the vasodilator effect of isoprenaline evident in resting state and maintained to some extent during exercise was abolished completely by preceding alpha-adrenergic blockade. The changes in the reactivity of resistance vessels in working skeletal muscles to noradrenaline, with abolition of its vasoconstrictor effect, have been shown by Rein [7] and others authors [2, 5]. Similarly, it is well known that the resistance vessels contain two types of adrenergic receptors alpha and beta, and that the response of the vessels to stimulation of these receptors are different [1]. In view of the recently published observations of Jarhult and Lundvall suggesting that the beta-adrenergic receptors play an important physiological role [6] in the arterial part of the microcirculation [6] and in view of the hypothesis put forward by Kunos and Szentivanyj that alpha and beta receptors can be transformed depending on the intensity of tissue metabolism [8] it seemed worth while to study more systematically the changes of the reactivity of alpha and beta adrenergic receptors in the vascular bed of the skeletal muscles during and after muscle exercise.  相似文献   

15.
The sympathetic nervous system (SNS) plays an important role in the regulation of energy expenditure. However, whether tonic SNS activity contributes to resting metabolic rate (RMR) in healthy adult humans is controversial, with the majority of studies showing no effect. We hypothesized that an intravenous propranolol infusion designed to achieve complete beta-adrenergic blockade would result in a significant acute decrease in RMR in healthy adults. RMR (ventilated hood, indirect calorimetry) was measured in 29 healthy adults (15 males, 14 females) before and during complete beta-adrenergic blockade documented by plasma propranolol concentrations > or =100 ng/ml, lack of heart rate response to isoproterenol, and a plateau in RMR with increased doses of propranolol. Propranolol infusion evoked an acute decrease in RMR (-71 +/- 11 kcal/day; -5 +/- 0.7%, P < 0.0001), whereas RMR was unchanged from baseline levels during a saline control infusion (P > 0.05). The response to propranolol differed from the response to saline control (P < 0.01). The absolute and percent decreases in RMR with propranolol were modestly related to baseline plasma concentration of norepinephrine (r = 0.38, P = 0.05; r = 0.44, P = 0.02, respectively). These findings provide direct evidence for the concept of tonic sympathetic beta-adrenergic support of RMR in healthy nonobese adults.  相似文献   

16.
After acclimatization to high altitude, maximal exercise cardiac output (QT) is reduced. Possible contributing factors include 1) blood volume depletion, 2) increased blood viscosity, 3) myocardial hypoxia, 4) altered autonomic nervous system (ANS) function affecting maximal heart rate (HR), and 5) reduced flow demand from reduced muscle work capability. We tested the role of the ANS reduction of HR in this phenomenon in five normal subjects by separately blocking the sympathetic and parasympathetic arms of the ANS during maximal exercise after 2-wk acclimatization at 3,800 m to alter maximal HR. We used intravenous doses of 8.0 mg of propranolol and 0.8 mg of glycopyrrolate, respectively. At altitude, peak HR was 170 +/- 6 beats/min, reduced from 186 +/- 3 beats/min (P = 0.012) at sea level. Propranolol further reduced peak HR to 139 +/- 2 beats/min (P = 0.001), whereas glycopyrrolate increased peak HR to sea level values, 184 +/- 3 beats/min, confirming adequate dosing with each drug. In contrast, peak O(2) consumption, work rate, and QT were similar at altitude under all drug treatments [peak QT = 16.2 +/- 1.2 (control), 15.5 +/- 1.3 (propranolol), and 16.2 +/- 1.1 l/min (glycopyrrolate)]. All QT results at altitude were lower than those at sea level (20.0 +/- 1.8 l/min in air). Therefore, this study suggests that, whereas the ANS may affect HR at altitude, peak QT is unaffected by ANS blockade. We conclude that the effect of altered ANS function on HR is not the cause of the reduced maximal QT at altitude.  相似文献   

17.
ECG and EEG signals were simultaneously recorded in lizards, Gallotia galloti, both in control conditions and under autonomic nervous system (ANS) blockade, in order to evaluate possible relationships between the ANS control of heart rate and the integrated central nervous system activity in reptiles. The ANS blockers used were prazosin, propranolol, and atropine. Time-domain summary statistics were derived from the series of consecutive R-R intervals (RRI) of the ECG to measure beat-to-beat heart rate variability (HRV), and spectral analysis techniques were applied to the EEG activity to assess its frequency content. Both prazosin and atropine did not alter the power spectral density (PSD) of the EEG low frequency (LF: 0.5-7.5 Hz) and high frequency (HF: 7.6-30 Hz) bands, whereas propranolol decreased the PSD in these bands. These findings suggest that central beta-adrenergic receptor mechanisms could mediate the reptilian waking EEG activity without taking part any alpha(1)-adrenergic and/or cholinergic receptor systems. In 55% of the lizards in control conditions, and in approximately 43% of the lizards under prazosin and atropine, a negative correlation between the coefficient of variation of the series of RRI value (CV(RRI)) and the mean power frequency (MPF) of the EEG spectra was found, but not under propranolol. Consequently, the lizards' HRV-EEG-activity relationship appears to be independent of alpha(1)-adrenergic and cholinergic receptor systems and mediated by beta-adrenergic receptor mechanisms.  相似文献   

18.
Autonomic nervous system activity is essential for regulation of ventricular repolarization (VR) and plays an important role in several arrhythmogenic conditions. This study in 31 healthy adult subjects (16 men, 15 women) evaluated the VR response to pharmacologically modulated autonomic nervous system activity applying vectorcardiography (VCG) analysis. During continuous VCG recording, 0.01-0.1 μg·kg(-1)·min(-1) isoprenaline (Iso) was infused at an increasing flow rate until three targeted heart rates (HR) were reached. After Iso washout, one intravenous bolus of 0.04 mg/kg atropine was given followed by an intravenous bolus of 0.2 mg/kg propranolol. A 5-min steady-state VCG recording was analyzed for each of the seven phases (including baseline 1 and 2). Furthermore, during the first 4 min following atropine, six periods of 10-s VCG were selected for subanalysis to evaluate the time course of change. The analysis included QRS, QT, and T-peak to T-end intervals, measures of the QRS and T vectors and their relation, as well as T-loop morphology parameters. By increasing HR, Iso infusion decreased HR dependent parameters reflecting total heterogeneity of VR (T area) and action potential morphology (ventricular gradient). In contrast, Iso prolonged QT HR corrected according to Bazett and increased the T-peak to T-end-to-QT ratio to levels observed in arrhythmogenic conditions. HR acceleration after atropine was accompanied by a transient paradoxical QT prolongation and delayed HR adaptation of T area and ventricular gradient. In addition to the expected HR adaptation, the VR response to β-adrenoceptor stimulation with Iso and to muscarinic receptor blockade with atropine thus included alterations previously observed in congenital and acquired long QT syndromes, demonstrating substantial overlap between physiological and pathophysiological electrophysiology.  相似文献   

19.
Autonomic nervous control of heart rate was studied in voluntarily diving ducks (Aythya affinis). Ducks were injected with the muscarinic blocker atropine, the beta-adrenergic blocker nadolol, the beta-adrenergic agonist isoproterenol, and a combination of both atropine and nadolol. Saline injection was used as a control treatment. The reduction in heart rate (from the predive level) normally seen during a dive was abolished by atropine. Nadolol reduced heart rate during all phases of diving activity-predive, dive, and postdive-indicating that sympathetic output to the heart was not withdrawn during diving. Isoproterenol increased heart rate before, during, and after the dive, although the proportional increase in heart rate was not as high during the dive as compared with the increase in routine heart rate or heart rate during the predive or postdive phase. The parasympathetic system predominates in the control of heart rate during diving despite the maintenance of efferent sympathetic influences to the heart, perhaps due to accentuated antagonism between the two branches of the autonomic nervous system.  相似文献   

20.
Regulation of heart rate was studied in rats receiving either i.v. saline at 64 microL/min or synthetic 28-residue rat atrial natriuretic peptide (ANF) at a dose sufficient to decrease mean arterial blood pressure by 10%. Autonomic influences were deduced from steady-state heart rate responses of each group to propranolol, atropine, or propranolol and atropine combined. A multiplicative model of heart rate control was used to derive quantitatively from the data the modulation of intrinsic heart rate by sympathetic and parasympathetic mechanisms. Animals receiving ANF showed a lower heart rate than control animals. This relative bradycardia was abolished by atropine. Blocking of sympathetic effects with propranolol had no effect on basal heart rate in either group, and atropinization led to significant increases in heart rate in both groups of rats. Mathematical analysis of the results showed that the bradycardia produced by ANF was due predominantly to a reduced intrinsic heart rate and to enhanced vagal inhibition of postganglionic sympathetic activity. Parasympathetic contribution to heart rate in the absence of sympathetic activity was negligible in control rats and small during ANF. We conclude that the major influences of ANF on heart rate control are a decrease of intrinsic heart rate and enhanced parasympathetic inhibition of postganglionic presynaptic sympathetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号