首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anoxic metabolism of cholesterol was studied in the denitrifying bacterium Sterolibacterium denitrificans, which was grown with cholesterol and nitrate. Cholest-4-en-3-one was identified before as the product of cholesterol dehydrogenase/isomerase, the first enzyme of the pathway. The postulated second enzyme, cholest-4-en-3-one-Δ1-dehydrogenase, was partially purified, and its N-terminal amino acid sequence and tryptic peptide sequences were determined. Based on this information, the corresponding gene was amplified and cloned and the His-tagged recombinant protein was overproduced, purified, and characterized. The recombinant enzyme catalyzes the expected Δ1-desaturation (cholest-4-en-3-one to cholesta-1,4-dien-3-one) under anoxic conditions. It contains approximately one molecule of FAD per 62-kDa subunit and forms high molecular aggregates in the absence of detergents. The enzyme accepts various artificial electron acceptors, including dichlorophenol indophenol and methylene blue. It oxidizes not only cholest-4-en-3-one, but also progesterone (with highest catalytic efficiency, androst-4-en-3,17-dione, testosterone, 19-nortestosterone, and cholest-5-en-3-one. Two steroids, corticosterone and estrone, act as competitive inhibitors. The dehydrogenase resembles 3-ketosteroid-Δ1-dehydrogenases from other organisms (highest amino acid sequence identity with that from Pseudoalteromonas haloplanktis), with some interesting differences. Due to its catalytic properties, the enzyme may be useful in steroid transformations.  相似文献   

2.
The initial enzymes and genes involved in the anoxic metabolism of cholesterol were studied in the denitrifying bacterium Sterolibacterium denitrificans Chol-1ST. The second enzyme of the proposed pathway, cholest-4-en-3-one-Δ1-dehydrogenase (AcmB), was partially purified. Based on amino acid sequence analysis, a gene probe was derived to screen a cosmid library of chromosomal DNA for the acmB gene. A positive clone comprising a 43-kbp DNA insert was sequenced. In addition to the acmB gene, the DNA fragment harbored the acmA gene, which encodes the first enzyme of the pathway, cholesterol dehydrogenase/isomerase. The acmA gene was overexpressed, and the recombinant dehydrogenase/isomerase was purified. This enzyme catalyzes the predicted transformation of cholesterol to cholest-4-en-3-one. S. denitrificans cells grown aerobically with cholesterol exhibited the same pattern of soluble proteins and cell extracts formed the same 14C-labeled products from [14C]cholesterol as cells that were grown under anoxic, denitrifying conditions. This is especially remarkable for the late products that are formed by anaerobic hydroxylation of the cholesterol side chain with water as the oxygen donor. Hence, this facultative anaerobic bacterium may use the anoxic pathway lacking any oxygenase-dependent reaction also under oxic conditions. This confers metabolic flexibility to such facultative anaerobic bacteria.  相似文献   

3.
Chromatographic and spectral evidence is adduced for the presence of cholest-5-en-3-one, cholest-4-en-3-one, and cholest-4-ene-3,6-dione in samples of cholesterol aged naturally in air or subjected to irradiation in air by 60Co gamma radiation. These findings establish an additional mode of air oxidation of cholesterol to A-ring 3-ketones. Moreover, the oxidation by air of cholest-5-en-3-one induced by 60Co gamma radiation yielded cholest-4-en-3-one, cholest-4-ene-3,6-dione, and the epimeric 3-oxocholest-4-ene-6-hydroperoxides. Cholest-4-en-3-one was not altered by irradiation in air, nor was cholesterol isomerized to cholest-4-en-3β-ol upon irradiation. From these observations it is deduced that the radiation-induced A-ring dehydrogenation of cholesterol yields initially cholest-5-en-3-one which upon isomerization yields cholest-4-en-3-one not further oxidized and which by a second oxidation yields the epimeric 3-oxocholest-4-ene-6-hydroperoxides which decompose to cholest-4-ene-3,6-dione.  相似文献   

4.
Cholesterol oxidase catalyzes the oxidation of cholesterol to cholest-5-en-3-one and its subsequent isomerization into cholest-4-en-3-one. Two active-site residues, His447 and Glu361, are important for catalyzing the oxidation and isomerization reactions, respectively. Double-mutants were constructed to test the interplay between these residues in catalysis. We observed that the k(cat) of oxidation for the H447Q/E361Q mutant was 3-fold less than that for H447Q and that the k(cat) of oxidation for the H447E/E361Q mutant was 10-fold slower than that for H447E. Because both doubles-mutants do not have a carboxylate at position 361, they do not catalyze isomerization of the reaction intermediate cholest-5-en-3-one to cholest-4-en-3-one. These results suggest that Glu361 can compensate for the loss of histidine at position 447 by acting as a general base catalyst for oxidation of cholesterol. Importantly, the construction of the double-mutant H447E/E361Q yields an enzyme that is 31,000-fold slower than wild type in k(cat) for oxidation. The H447E/E361Q mutant is folded like native enzyme and still associates with model membranes. Thus, this mutant may be used to study the effects of membrane binding in the absence of catalytic activity. It is demonstrated that in assays with caveolae membrane fractions, the wild-type enzyme uncouples platelet-derived growth factor receptor beta (PDGFRbeta) autophosphorylation from tyrosine phosphorylation of neighboring proteins, and the H447E/E361Q mutant does not. Thus maintenance of membrane structure by cholesterol is important for PDGFRbeta-mediated signaling. The cholesterol oxidase mutant probe described will be generally useful for investigating the role of membrane structure in signal transduction pathways in addition to the PDGFRbeta-dependent pathway tested.  相似文献   

5.
The Mycobacterium tuberculosis cytochrome P450 enzyme CYP142 is encoded in a large gene cluster involved in metabolism of host cholesterol. CYP142 was expressed and purified as a soluble, low spin P450 hemoprotein. CYP142 binds tightly to cholesterol and its oxidized derivative cholest-4-en-3-one, with extensive shift of the heme iron to the high spin state. High affinity for azole antibiotics was demonstrated, highlighting their therapeutic potential. CYP142 catalyzes either 27-hydroxylation of cholesterol/cholest-4-en-3-one or generates 5-cholestenoic acid/cholest-4-en-3-one-27-oic acid from these substrates by successive sterol oxidations, with the catalytic outcome dependent on the redox partner system used. The CYP142 crystal structure was solved to 1.6 Å, revealing a similar active site organization to the cholesterol-metabolizing M. tuberculosis CYP125, but having a near-identical organization of distal pocket residues to the branched fatty acid oxidizing M. tuberculosis CYP124. The cholesterol oxidizing activity of CYP142 provides an explanation for previous findings that ΔCYP125 strains of Mycobacterium bovis and M. bovis BCG cannot grow on cholesterol, because these strains have a defective CYP142 gene. CYP142 is revealed as a cholesterol 27-oxidase with likely roles in host response modulation and cholesterol metabolism.  相似文献   

6.
The human monocyte-like cell line U937, which is a cholesterol auxotroph, does not grow on mevalonate, squalene, or 4,4-dimethyl cholest-7-en-3 beta-ol. It grows on cholest-7-en-3 beta-ol and converts it to cholesterol. When deprived of an exogenous source of cholesterol, the cells accumulate 4 alpha-methyl-cholest-8-en-3-one. The cell-free extracts of U937 are also devoid of 3-ketoreductase activity. The present studies indicate that the lesion in cholesterol synthesis by these cells is located at 3-ketosteroid reductase, making this the first report of a deficiency of this enzyme. In contrast, another U937 strain (U937-N) synthesizes cholesterol, does not accumulate 4 alpha-methyl-cholest-8-en-3-one, and has 3-ketosteroid reductase activity. The two strains should be valuable in studies of the regulation of cholesterol metabolism and of the role of cholesterol in membrane structure and function.  相似文献   

7.
Biosynthesis of cholestanol: 5-alpha-cholestan-3-one reductase of rat liver   总被引:4,自引:0,他引:4  
The 3-beta-hydroxysteroid dehydrogenase of rat liver which catalyzes the conversion of 5alpha-cholestan-3-one to 5alpha-cholestan-3beta-ol is localized mainly in the microsomal fraction. The enzyme required NADPH as hydrogen donor and differed from the known 3-beta-hydroxysteroid dehydrogenases of the C(19) series in being inactive in the presence of NADH. The microsomal preparations did not reduce the 3-keto groups of cholest-4-en-3-one, cholest-5-en-3-one, or 5beta-cholestan-3-one to the corresponding 3beta-hydroxy compounds. The conversion of 5alpha-cholestan-3-one to 5alpha-cholestan-3beta-ol was only slightly inhibited by the reaction product or by other monohydroxy steroids, but a strong inhibitory effect was noted with cholest-5-en-3-one, 5alpha-cholestane-3beta, 7alpha-diol and 5alpha-cholestan-7-on-3beta-ol. The microsomes, but not high speed supernatant solution, catalyzed the reverse of the cholestanone reductase reaction, namely the conversion of 5alpha-cholestan-3beta-ol to 5alpha-cholestan-3-one in the presence of oxygen and an NADP-generating system. The action of the microsomal preparations upon 5alpha-cholestan-3-one produced 5alpha-cholestan-3alpha-ol in addition to the 3beta-epimer. The 3-alpha-hydroxysteroid dehydrogenase involved functioned with either NADH or NADPH as hydrogen donor. The ratio of 5alpha-cholestan-3beta-ol to 5alpha-cholestan-3alpha-ol formed from 5alpha-cholestan-3-one was approximately 10:1 and was independent of the sex of the animal from which the microsomes were prepared.  相似文献   

8.
The photosensitized oxidation of cholest-4-en-3β-ol in which singlet molecular oxygen is implicated yielded cholest-4-en-3-one and the isomeric epoxides 4α,5-epoxy-5α-cholestan-3-one and 4β,5-epoxy-5β-cholestan-3-one, the epoxides being formed in the ratio 3 : 1. Oxidation of cholest-4-en-3-one by alkaline hydrogen peroxide likewise yielded the isomeric 4,5-epoxides but in the ratio 1 : 7.4. Attempted use of cholest-4-en-3β-ol to intercept singlet molecular oxygen putatively generated in the disproportionation of hydrogen peroxide gave a very complex product mixture of over 50 components from which only cholest-4-en-3-one could be identified. However, neither isomeric 4,5-epoxycholestan-3-one was detected among the products. These data establish that it is unwarranted to infer the action of single molecular oxygen in systems containing cholest-4-en-3β-ol merely by product analysis where the product 4α,5-epoxy-5α-cholestan-3-one is formed.  相似文献   

9.
Biochemical characterization of cholesterol-reducing Eubacterium.   总被引:3,自引:2,他引:1       下载免费PDF全文
We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addition to plasmenylethanolamine, five other lipids which contain an alkenyl ether residue supported growth of Eubacterium strain 403 in a lecithin-cholesterol base medium. Of six steroids tested, cholesterol, cholest-4-en-3-one, cholest-4-en-3 beta-ol (allocholesterol), and androst-5-en-3 beta-ol-17-one supported growth of Eubacterium strain 403. All four steroids were reduced to the 3 beta-ol, 5 beta-H products. The delta 5 steroids cholest-5-en-3 alpha-ol (epicholesterol) and 22,23-bisnor-5-cholenic acid-3-beta-ol were not reduced and did not support growth of the Eubacterium strain.  相似文献   

10.
The bioconversion of 7-oxygenated sterols by Mycobacterium aurum was studied in a preliminary investigation of the microbial conversion of wool wax. 7-Oxocholesterol was found to be transformed mainly into 3,17-dioxygenated androstane derivatives. 7 xi-Hydroxylated sterols were formed in an initial reduction step, and the C-7 hydroxyl group was then eliminated in a dehydration reaction. This was thought to take place during the isomerisation of cholest-4-en-3-one to cholest-5-en-3-one. Deuterium labelling experiments showed that this elimination proceeded faster for the C-7 alpha isomer, although it was not stereospecific. The C-7 alpha and C-7 beta-hydroxy isomers were weakly interconverted via the 7-oxo derivatives. Cholest-4-en-3-one, cholest-1,4-dien-3-one and cholest-4,6-dien-3-one all lost their side chains following a hydrogenation/dehydrogenation reaction. The resulting 3,17-dioxoandrostene or 3,17-androstadiene derivatives were mainly hydrogenated into 5 alpha-androstane-3,17-dione and 5 alpha-androstane-3 beta-ol-17-one. Elimination of the 3 beta-hydroxyl groups giving cholesta-3,5-dien-7-one, and subsequent microbial degradation of the side chain was not observed to any significant extent. The convergence of the bioconversion pathways of cholesterol and the 7-oxygenated cholesterols enabled crude, partially auto-oxidised cholesterol to be used as a substrate for the production of 3,17-dioxygenated androstane derivatives by M. aurum.  相似文献   

11.
Steroid-8-ene isomerase that catalyzes isomerization of delta 8- to delta 7-sterols has been solubilized from rat liver microsomes with a mixture of two detergents, octylglucoside and sodium taurodeoxycholic acid. During a 40-fold enrichment of the solubilized enzyme, other enzymes of cholesterol biosynthesis, endogenous lipids, and electron carriers are removed. A comparison of properties of the solubilized and partially purified isomerase with the membrane-bound enzyme shows they are essentially identical with respect to pH profile, effect of inhibitors and cofactors, substrate specificity, and Km values. Addition of phospholipid to the partially purified enzyme stimulates activity as much as 1.8-fold over control rates. Although the relative rate of isomerization of cholesta-8,24-dien-3 beta-ol is six times that observed with cholest-8-en-3 beta-ol, the delta 8 to delta 7 ratio at equilibrium is approximately equal. The reversibility of the reaction has been demonstrated by the direct conversion of cholest-7-en-3 beta-ol to cholest-8-en-3 beta-ol; at equilibrium the delta 7-isomer is predominant (19/1). The purified enzyme does not catalyze isomerization of cholesta-8,14-dien-3 beta-ol and cholest-8(14)-en-3 beta-ol under conditions that result in equilibrium mixtures of isomers from cholest-8(9)-en-3 beta-ol. These results are consistent with the earlier suggestion that delta 8(14)-sterols are neither formed nor metabolized by the same microsomal enzymes that catalyze transformation of lanosterol to cholesterol.  相似文献   

12.
Pseudomonas sp. strain ST-200 oxidizes cholesterol dissolved in an organic solvent overlying the medium. Major conversion products are cholest-4-en-3-one (C4EO), 6β-hydroxycholest-4-en-3-one (HCEO), and cholest-4-ene-3,6-dione (CEDO). Productivity of each conversion product was altered by changing organic solvents used to dissolve the cholesterol. Generally, HCEO was predominant among the products. HCEO was produced even by cells grown without cholesterol and then killed with harmful organic solvents. The yield of the most oxidized product, CEDO, was improved when the cells were grown in the presence of cholesterol dissolved in a less toxic solvent, cyclooctane.  相似文献   

13.
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. ThechoR gene was cloned in pET23a and used as the starting plasmid for Glu361Asn, Glu361Gln and Glu361Asp site-directed mutagenesis. The purified mutant proteins like the wild-type have a molecular mass of 55 kD. The specific activities of Glu361Gln and Glu361Asn mutants were 28 and 35 times less than the wild-type. Glu361Asp mutant showed nearly no catalytic activity and was not purified. These experiments clearly demonstrated the importance of Glu361 for the enzymatic reactions of cholesterol oxidaseRhodococcus sp.  相似文献   

14.
A K Batta  G Salen  S Shefer 《Steroids》1988,52(1-2):109-122
This paper describes convenient syntheses for labeled and unlabeled cholest-5-en-3-one, cholest-4-en-3-one, epicholesterol, cholest-4-en-3 beta-ol, and cholest-4-en-3 alpha-ol. The thin-layer chromatography, high-performance liquid chromatography, and gas-liquid chromatography of these compounds and of cholestanol and epicholestanol are also described. The synthesized compounds are potential precursors in the biosynthesis of cholestanol in mammals.  相似文献   

15.
If the biological conversion of cholest-7-en-3beta-ol (I) into cholesterol (IV) occurred thorugh the intermediacy of cholest-7-ene-3beta,5alpha-diol (II) then the factor(s) adversely affecting the convwesion of the 5alpha-hydroxy sterol (II) into cholesterol must at least equally adversely affect the formation of cholesterol from cholest-7-en-3beta-ol. By using partial denaturation techniquws and dual-labelled precursors it was shown that the enzyme system responsible for the conversion of the 5alpha-hydroxy sterol (II) into cholesterol denatured faster than that for the corresponding conversion from cholest-7-en-3beta-ol (I).  相似文献   

16.
The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1–10 µg ml−1. Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.  相似文献   

17.
1. The specific radioactivities of non-esterified and esterified cholesterol, progesterone and 20alpha-hydroxypregn-4-en-3-one were determined in slices of superovulated rat ovary after incubation with [1-(14)C]acetate in vitro for various times. The specific radioactivities of progesterone and 20alpha-hydroxypregn-4-en-3-one were equal, and (during the fourth hour of incubation) exceeded those of the non-esterified cholesterol and the esterified cholesterol by factors of 2.8 and 7.6 respectively. 2. After separation of homogenates of superovulated rat ovary slices previously incubated with [(14)C]acetate into subcellular fractions by differential centrifugation, the specific radioactivities of non-esterified cholesterol in the cytosol, mitochondria, lipid-containing storage granules and microsomal fraction were 1220, 1510, 1420 and 4020d.p.m./mumol respectively; the corresponding values for the specific radioactivity of the esterified cholesterol were 600, 700, 730 and 760d.p.m./mumol. The specific radioactivities of progesterone and 20alpha-hydroxypregn-4-en-3-one were equal in all fractions; the corresponding mean specific radioactivity of progesterone+20alpha-hydroxypregn-4-en-3-one was 6150d.p.m./mumol. 3. By using glutamate dehydrogenase and cytochrome (a+a(3)) as mitochondrial markers, the presence of cholesterol side-chain cleavage enzyme was demonstrated in microsomal fraction free of mitochondrial contamination. 4. The specific radioactivities of ovarian non-esterified and esterified cholesterol, progesterone and 20alpha-hydroxypregn-4-en-3-one were determined up to 8h after the intravenous injection of [4-(14)C]cholesterol into superovulated rats. At all times the specific radioactivities of progesterone and 20alpha-hydroxypregn-4-en-3-one were equal to the specific radioactivity of non-esterified cholesterol and exceeded, by up to 3.3-fold, that of the esterified cholesterol. 5. It is concluded that non-esterified cholesterol formed from [(14)C]acetate in the endoplasmic reticulum equilibrates slowly with non-esterified cholesterol in other subcellular fractions, and is preferentially converted into steroids. Such a mechanism presupposes the operation of a microsomal cholesterol side-chain cleavage enzyme using non-esterified cholesterol as its substrate. Unrelated evidence is presented in support of the existence of such an enzyme. The results are discussed in the light of other biochemical and electron-microscopic findings relating to the compartmentation of cholesterol in steroidogenic tissues.  相似文献   

18.
1. The echinoderms Asterias rubens and Solaster papposus (Class Asteroidea) metabolize injected [4(-14)C]cholest-5-en-3beta-ol to produce labelled 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 2. Conversion of 5alpha-[4(-14)C]cholestan-3beta-ol into 5alpha-cholest-7-en-3beta-ol was demonstrated in A. Rubens. 3. Incubations of A. rubens with [4(-14)C]cholest-4-en-3-one resulted in the production of labelled 5alpha-cholestan-3-one, 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 4. [4(-14)C]Sitosterol was metabolized by A. rubens to give 5alpha-stigmastan-3beta-ol and 5alpha-stigmast-7-en-3beta-ol. 5. The significance of these results in relation to the presence of alpha7 sterols in starfish is discussed.  相似文献   

19.
A mass spectrometric procedure which utilizes multiple selected ion monitoring (SIM) for measuring the tissue levels of cholest-5-en-3β,7α-diol, cholest-5-en-3β,7β-diol, cholest-5-en-3β,25-diol, and cholest-5-en-3β-ol-7-one is described. Trimethylsilyl ethers (TMS) of sterols in a lipid extract are analyzed directly by focusing the ions at me 546, 472, and 443. Endogenous cholesterol serves as an internal standard and its concentration is determined by gas chromatography. The sensitivity of this method has allowed measurement of 2 ng of oxygenated sterol which corresponded to the amount present in 1 mg of rat liver.  相似文献   

20.
(1) The neutral lipids and the free and bound fatty acids of a highly purified (Na+ + K+)-ATPase preparation from rabbit kidney outer medulla have been analysed. (2) On a dry weight basis, the total lipid content is nearly the same as the total protein content, and consists for 66% of phospholipids and for 34% of neutral lipids and free fatty acids. In the latter category cholesterol is the main component (71%). (3) On a molar basis the enzyme preparation contains 382 mol phospholipids, 67 mol free fatty acids, 9, 16 and 12 mol mono-, di- and triacylglycerols, 249 and 19 mol free and esterified cholesterol per mol enzyme. (4) The fatty acid composition of each lipid and of the free fatty acid fraction, present in the enzyme preparation, is reported. (5) All cholesterol and part of the phospholipids can be removed by hexane extraction, leaving 66% of the (Na+ + K+)-ATPase activity. Oxidation of all cholesterol to cholest-4-en-3-one by cholesterol oxidase leaves 85% of the (Na+ + K+)-ATPase activity. These results indicate that cholesterol is not essential for (Na+ + K+)-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号