首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The parasexual cycle with parameiosis has been characterized previously by the occurrence of genetic recombination and haploidization inside heterokaryotic hyphae prior to conidial formation. The aim of current research was to characterize, through genetic and cytological analyses, an asexual development mutant strain of A. nidulans and to use it to obtain parameiotic segregants. Analyses showed the medusa phenotype of the B84 strain, whose mutant allele was mapped in the chromosome I. The heterokaryons B84(med)//G422(med+) and B84(med)//G839(brl) were formed in liquid MM+2% CM and inoculated in the appropriate selective media. Two mitotic segregant groups were obtained: aneuploids and haploid stable recombinants. Mitotic segregants, wild-types, and developmental mutants, which did not produce new visible mitotic sectors in the presence of Benomyl and which showed normal meiotic behavior during the sexual cycle, were classified as parameiotics.  相似文献   

5.
6.
7.
Asexual development in Aspergillus nidulans begins in superficial hyphae as the programmed emergence of successive pseudohyphal modules, collectively known as the conidiophore, and is completed by a layer of specialized cells (phialides) giving rise to chains of aerial spores. A discrete number of regulatory factors present in hyphae play different stage-specific roles in pseudohyphal modules, depending on their cellular localization and protein-protein interactions. Their multiple roles include the timely activation of a sporulation-specific pathway that governs phialide and spore formation. Such functional versatility provides for a new outlook on morphogenetic change and the ways we should study it.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Han KH  Seo JA  Yu JH 《Molecular microbiology》2004,51(5):1333-1345
G protein-coupled receptors (GPCRs) are key components of heterotrimeric G protein-mediated signalling pathways that detect environmental signals and confer rapid cellular responses. To broaden our understanding of signalling mechanisms in the filamentous fungus Aspergillus nidulans, intensive analyses of the Aspergillus nidulans genome have been carried out and nine genes (gprA approximately gprI) that are predicted to encode seven transmembrane spanning GPCRs have been identified. Six of nine putative GPCRs have been disrupted and the gprD gene was found to play a central role in coordinating hyphal growth and sexual development. Deletion of gprD (Delta gprD) causes extremely restricted hyphal growth, delayed conidial germination and uncontrolled activation of sexual development resulting in a small colony covered by sexual fruiting bodies. Genetic studies indicate that GprD may not signal through the FadA (G alpha)-protein kinase A (PKA) pathway. Elimination of sexual development rescues both growth and developmental abnormalities caused by Delta gprD, suggesting that the primary role of GprD is to negatively regulate sexual development. This is supported by the fact that environmental conditions inhibiting sexual development suppress growth defects of the Delta gprD mutant. We propose that the GprD-mediated signalling cascade negatively regulates sexual development, which is required for proper proliferation of A. nidulans.  相似文献   

16.
C A D'Souza  B N Lee  T H Adams 《Genetics》2001,158(3):1027-1036
We showed previously that a DeltafluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG ( approximately 400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of DeltafluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from DeltaflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.  相似文献   

17.
18.
19.
abaA controls phialide differentiation in Aspergillus nidulans.   总被引:4,自引:1,他引:4       下载免费PDF全文
Aspergillus nidulans is an ascomycetous fungus that reproduces asexually by forming multicellular conidiophores and uninucleate spores called conidia. Loss of function mutations in the abacus A (abaA) regulatory locus result in formation of aberrant conidiophores that fail to produce conidia. Wild-type conidiophores form two tiers of sterigmata. The first tier, metulae, divide to produce the second tier, phialides. Phialides are sporogenous cells that produce conidia through a specialized apical budding process. We have examined conidiophore development in an abaA- strain at the ultrastructural level. The results showed that in the mutant metulae produce supernumerary tiers of cells with metula-like, rather than phialide-like, properties. Temperature shift experiments with an abaA14ts strain demonstrated that abaA+ function induced phialide formation by the aberrant abacus cells and was continuously required for maintenance of phialide function. In the absence of abaA+ activity, metulae simply proliferated and later developmental steps never occurred. We conclude that abaA+ directs the differentiation of phialides and is continuously required for maintenance of their function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号