首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social Hymenoptera are important models for analyzing functional brain plasticity. These insects provide the opportunity to learn how individuals' social roles are related to flexible investment in different brain regions. We assessed how age, sex, and individual behavior influence brain development in a primitively eusocial paper wasp, Mischocyttarus mastigophorus. Previous research in other species has demonstrated experience-dependent changes in central and primary sensory centers in the brain. The mushroom body (MB) calyx is a central processing region involved in sensory integration, learning and memory and may be particularly relevant to social behavior. We extend earlier cross-sectional studies of female brain/behavior associations by measuring sex- and age-related differences in MB calyx volume, and by quantifying optic lobe and antennal lobe development. Age did predict MB development: calyx neuropils increased in volume with age. We show that MB development differs between the sexes. Males, who frequently depart to seek mating opportunities, have larger MB calyx collars (which receive optic input) than females. In contrast, females have augmented predominantly antenna-innervated MB calyx lips, which may be useful for nestmate recognition and interactions on the nest. Sex differences in MB development increased with age. After accounting for age and sex effects, social aggression was positively correlated with MB calyx volume for both sexes. We found little evidence for relationships among sex, age, or behavior and the volumes of peripheral sensory processing structures. We discuss the implications of gender- and age-related effects on brain volume in relation to male and female life history and reproductive success.  相似文献   

2.
A map of olfactory representation in the Drosophila mushroom body   总被引:2,自引:0,他引:2  
Lin HH  Lai JS  Chin AL  Chen YC  Chiang AS 《Cell》2007,128(6):1205-1217
Neural coding for olfactory sensory stimuli has been mapped near completion in the Drosophila first-order center, but little is known in the higher brain centers. Here, we report that the antenna lobe (AL) spatial map is transformed further in the calyx of the mushroom body (MB), an essential olfactory associated learning center, by stereotypic connections with projection neurons (PNs). We found that Kenyon cell (KC) dendrites are segregated into 17 complementary domains according to their neuroblast clonal origins and birth orders. Aligning the PN axonal map with the KC dendritic map and ultrastructural observation suggest a positional ordering such that inputs from the different AL glomeruli have distinct representations in the MB calyx, and these representations might synapse on functionally distinct KCs. Our data suggest that olfactory coding at the AL is decoded in the MB and then transferred via distinct lobes to separate higher brain centers.  相似文献   

3.
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

4.
The establishment of food preferences and aversions determines the modulation of eating behaviour and the optimization of food intake. These phenomena rely on the learning and memory abilities of the organism and depend on different psychobiological mechanisms such as associative conditionings and sociocultural influences. After summarizing the various behavioural and environmental determinants of the establishment of food preferences and aversions, this paper describes several issues encountered in human nutrition when preferences and aversions become detrimental to health: development of eating disorders and obesity, aversions and anorexia in chemotherapy-treated or elderly patients and poor palatability of medical substances and drugs. Most of the relevant biomedical research has been performed in rodent models, although this approach has severe limitations, especially in the nutritional field. Consequently, the final aim of this paper is to discuss the use of the pig model to investigate the behavioural and neurophysiological mechanisms underlying the establishment of food preferences and aversions by reviewing the literature supporting analogies at multiple levels (general physiology and anatomy, sensory sensitivity, digestive function, cognitive abilities, brain features) between pigs and humans.  相似文献   

5.
Since the discovery of adult neurogenesis, a major issue is the role of newborn neurons and the function-dependent regulation of adult neurogenesis. We decided to use an animal model with a relatively simple brain to address these questions. In the adult cricket brain as in mammals, new neurons are produced throughout life. This neurogenesis occurs in the main integrative centers of the insect brain, the mushroom bodies (MBs), where the neuroblasts responsible for their formation persist after the imaginal molt. The rate of production of new neurons is controlled not only by internal cues such as morphogenetic hormones but also by external environmental cues. Adult crickets reared in an enriched sensory environment experienced an increase in neuroblast proliferation as compared with crickets reared in an impoverished environment. In addition, unilateral sensory deprivation led to reduced neurogenesis in the MB ipsilateral to the lesion. In search of a functional role for the new cells, we specifically ablated MB neuroblasts in young adults using brain-focused gamma ray irradiation. We developed a learning paradigm adapted to the cricket, which we call the "escape paradigm." Using this operant associative learning test, we showed that crickets lacking neurogenesis exhibited delayed learning and reduced memory retention of the task when olfactory cues were used. Our results suggest that environmental cues are able to influence adult neurogenesis and that, in turn, newly generated neurons participate in olfactory integration, optimizing learning abilities of the animal, and thus its adaptation to its environment. Nevertheless, odor learning in adult insects cannot always be attributed to newly born neurons because neurogenesis is completed earlier in development in many insect species. In addition, many of the irradiated crickets performed significantly better than chance on the operant learning task.  相似文献   

6.
Classical fear conditioning in functional neuroimaging   总被引:1,自引:0,他引:1  
  相似文献   

7.
An important body of evidence documents the differential expression of ion channels in brains, suggesting they are essential to endow particular brain structures with specific physiological properties. Because of their role in correlating inputs and outputs in neurons, modulation of voltage-dependent ion channels (VDICs) can profoundly change neuronal network dynamics and performance, and may represent a fundamental mechanism for behavioral plasticity, one that has received less attention in learning and memory studies. Revisiting three paradigmatic mutations altering olfactory learning and memory in Drosophila (dunce, leonardo, amnesiac) a link was established between each mutation and the operation of VDICs in Kenyon cells, the intrinsic neurons of the mushroom bodies (MBs). In Drosophila, MBs are essential to the emergence of olfactory associative learning and retention. Abnormal ion channel operation might underlie failures in neuronal physiology, and be crucial to understand the abnormal associative learning and retention phenotypes the mutants display. We also discuss the only case in which a mutation in an ion channel gene (shaker) has been directly linked to olfactory learning deficits. We analyze such evidence in light of recent discoveries indicating an unusual ion current profile in shaker mutant MB intrinsic neurons. We anticipate that further studies of acquisition and retention mutants will further confirm a link between such mutations and malfunction of specific ion channel mechanisms in brain structures implicated in learning and memory.  相似文献   

8.
Physiological stress is known to produce analgesia and memory disruption. Brain renin angiotensin system (RAS) has been reported to participate in stress response and plays a role in the processing of sensory information. Angiotensin receptors (AT), particularly AT1 subtypes have been reported to be distributed in brain areas that are intimately associated with stress response. The purpose of present study was to examine the modulation of AT1 receptor in the immobilization stress and angiotensin II (AngII)-induced analgesia and impaired retention, and to determine whether resultant behavioral changes involve common sensory signals. Result of present experiments showed that immobilization stress in mice and rats, and intracerebroventricular (ICV) administration of AngII (10 and 20 ng) in rats produced an increase in tail-flick latency. Similarly, post training administration of AngII or immobilization stress produced impairment of retention tested on plus-maze learning and on passive avoidance step-down task. Both these responses were sensitive to reversal by prior treatment with losartan (10 and 20 mg/kg), an AT1 AngII receptor antagonist. On the other hand, naloxone, an opiate antagonist preferentially attenuated the stress and AngII-induced analgesia and retention deficit induced by immobilization stress, but failed to reverse the AngII induced retention deficit. These results suggest immobilization stress-induced analgesia and impaired retention involves the participation of brain RAS. Further, failure of naloxone to reverse AngII-induced retention impairment shows. AngII-induced behavioral changes are under control of different sensory inputs.  相似文献   

9.
The Drosophila Pax6 genes, eyeless (ey) and twin of eyeless (toy), are expressed in both eyes and the brain. Previous studies have demonstrated that ey plays important roles in axonal outgrowth and differentiation of mushroom bodies (MBs), which are centers for associative learning and memory in flies. However, the functional significance of toy in brain development is poorly understood. Here, we describe the expression patterns of TOY, and show that TOY expression partially overlaps with EY expression in the embryonic, larval and adult brains. Mutations of toy perturb brain neuromere formation in the embryonic stages, and result in severe deformation of the MB lobes in pharate adult brains. Moreover, we also analyzed toy functions by gain-of-function experiments, and show that overexpression of toy results in degeneration of MB lobes. Thus, our results demonstrate the importance of toy in embryonic brain patterning as well as in post-embryonic development of the major brain structures such as MBs.  相似文献   

10.
Implicit multisensory associations influence voice recognition   总被引:4,自引:1,他引:3       下载免费PDF全文
Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules.  相似文献   

11.
Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.  相似文献   

12.
13.
Damage to orbitofrontal cortex (OFC) has long been associated with deficits in reversal learning. OFC damage also causes inflexible associative encoding in basolateral amygdala (ABL) during reversal learning. Here we provide a critical test of the hypothesis that the reversal deficit in OFC-lesioned rats is caused by this inflexible encoding in ABL. Rats with bilateral neurotoxic lesions of OFC, ABL, or both areas were tested on a series of two-odor go/no-go discrimination problems, followed by two serial reversals of the final problem. As expected, all groups acquired the initial problems at the same rate, and rats with OFC lesions were slower to acquire the reversals than sham controls. This impairment was abolished by accompanying ABL lesions, while ABL lesions alone had no effect on reversal learning. These results are consistent with the hypothesis that OFC facilitates cognitive flexibility by promoting updating of associative encoding in downstream brain areas.  相似文献   

14.
Classical conditioning, a form of associative learning, was first described in the vertebrate literature by Pavlov, but has since been documented for a wide variety of insects. Our knowledge of associative learning by insects began with Karl vonFrisch explaining communication among honeybees, Apis mellifera L. (Hymenoptera: Apidae). Since then, the honey bee has provided us with much of what we understand about associative learning in insects and how we relate the theories of learning in vertebrates to insects. Fruit flies, moths, and parasitic wasps are just a few examples of other insects that have been documented with the ability to learn. A novel direction in research on this topic attempts to harness the ability of insects to learn for the development of biological sensors. Parasitic wasps, especially Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), have been conditioned to detect the odors associated with explosives, food toxins, and cadavers. Honeybees and moths have also been associatively conditioned to several volatiles of interest in forensics and national security. In some cases, handheld devices have been developed to harness the insects and observe conditioned behavioral responses to air samples in an attempt to detect target volatiles. Current research on the development of biological sensors with insects is focusing on factors that influence the learning and memory ability of arthropods as well as potential mathematical techniques for improving the interpretation of the behavioral responses to conditioned stimuli. Chemical detection devices using arthropod‐based sensing could be used in situations where trained canines cannot be used (such as toxic environments) or are unavailable, electronic devices are too expensive and/or not of sufficient sensitivity, and when conditioning to target chemicals must be done within minutes of detection. The purpose of this article is to provide a brief review of the development of M. croceipes as a model system for exploring associative learning for the development of biological sensors.  相似文献   

15.
Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the arthropod brain. In order to understand the cellular and genetic processes that control the early development of MBs, we have performed high-resolution neuroanatomical studies of the embryonic and post-embryonic development of the Drosophila MBs. In the mid to late embryonic stages, the pioneer MB tracts extend along Fasciclin II (FAS II)-expressing cells to form the primordia for the peduncle and the medial lobe. As development proceeds, the axonal projections of the larval MBs are organized in layers surrounding a characteristic core, which harbors bundles of actin filaments. Mosaic analyses reveal sequential generation of the MB layers, in which newly produced Kenyon cells project into the core to shift to more distal layers as they undergo further differentiation. Whereas the initial extension of the embryonic MB tracts is intact, loss-of-function mutations of fas II causes abnormal formation of the larval lobes. Mosaic studies demonstrate that FAS II is intrinsically required for the formation of the coherent organization of the internal MB fascicles. Furthermore, we show that ectopic expression of FAS II in the developing MBs results in severe lobe defects, in which internal layers also are disrupted. These results uncover unexpected internal complexity of the larval MBs and demonstrate unique aspects of neural generation and axonal sorting processes during the development of the complex brain centers in the fruit fly brain.  相似文献   

16.
A substance in rabbit milk, 2-methylbut-2-enal (2MB2), has been identified as a pheromone that triggers stereotypical searching behavior from rabbit pups. Pups respond to the odor of 2MB2 solutions in concentration-dependent manner, but fail to respond to 20 other volatile components in rabbit milk and 20 additional odorants. The effectiveness of 2MB2 generalizes across strains and breeds of rabbits, but is ineffective in closely related species. Finally, pup responsiveness to 2MB2 is innate and does not require learning. This study, for the first time, identifies a mammary pheromone that provides sufficient sensory cue for nipple attachment by newborns. In addition to contributing to our understanding of pheromonal communication, it provides an advantageous model system for neurobiologists.  相似文献   

17.
Hebbian forms of synaptic plasticity are required for the orderly development of sensory circuits in the brain and are powerful modulators of learning and memory in adulthood. During development, emergence of Hebbian plasticity leads to formation of functional circuits. By modeling the dynamics of neurotransmitter release during early postnatal cortical development we show that a developmentally regulated switch in vesicle exocytosis mode triggers associative (i.e. Hebbian) plasticity. Early in development spontaneous vesicle exocytosis (SVE), often considered as ''synaptic noise'', is important for homogenization of synaptic weights and maintenance of synaptic weights in the appropriate dynamic range. Our results demonstrate that SVE has a permissive, whereas subsequent evoked vesicle exocytosis (EVE) has an instructive role in the expression of Hebbian plasticity. A timed onset for Hebbian plasticity can be achieved by switching from SVE to EVE and the balance between SVE and EVE can control the effective rate of Hebbian plasticity. We further show that this developmental switch in neurotransmitter release mode enables maturation of spike-timing dependent plasticity. A mis-timed or inadequate SVE to EVE switch may lead to malformation of brain networks thereby contributing to the etiology of neurodevelopmental disorders.  相似文献   

18.
Several models of associative learning predict that stimulus processing changes during association formation. How associative learning reconfigures neural circuits in primary sensory cortex to "learn" associative attributes of a stimulus remains unknown. Using 2-photon in vivo calcium imaging to measure responses of networks of neurons in primary somatosensory cortex, we discovered that associative fear learning, in which whisker stimulation is paired with foot shock, enhances sparse population coding and robustness of the conditional stimulus, yet decreases total network activity. Fewer cortical neurons responded to stimulation of the trained whisker than in controls, yet their response strength was enhanced. These responses were not observed in mice exposed to a nonassociative learning procedure. Our results define how the cortical representation of a sensory stimulus is shaped by associative fear learning. These changes are proposed to enhance efficient sensory processing after associative learning.  相似文献   

19.
20.
The insect mushroom bodies play important roles in a number of higher processing functions such as sensory integration, higher level olfactory processing, and spatial and associative learning and memory. These functions have been established through studies in a handful of tractable model systems, of which only the fruit fly Drosophila melanogaster has been readily amenable to genetic manipulations. The red flour beetle Tribolium castaneum has a sequenced genome and has been subject to the development of molecular tools for the ready manipulation of gene expression; however, little is known about the development and organization of the mushroom bodies of this insect. The present account bridges this gap by demonstrating that the organization of the Tribolium mushroom bodies is strikingly like that of the fruit fly, with the significant exception that the timeline of neurogenesis is shifted so that the last population of Kenyon cells is born entirely after adult eclosion. Tribolium Kenyon cells are generated by two large neuroblasts per hemisphere and segregate into an early-born delta lobe subpopulation followed by clear homologs of the Drosophila gamma, alpha'/beta' and alpha/beta lobe subpopulations, with the larval-born cohorts undergoing dendritic reorganization during metamorphosis. BrdU labeling and immunohistochemical staining also reveal that a proportion of individual Tribolium have variable numbers of mushroom body neuroblasts. If heritable, this variation represents a unique opportunity for further studies of the genetic control of brain region size through the control of neuroblast number and cell cycle dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号