首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cuticle collagen genes. Expression in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Collagen is a structural protein used in the generation of a wide variety of animal extracellular matrices. The exoskeleton of the free-living nematode, Caenorhabditis elegans, is a complex collagen matrix that is tractable to genetic research. Mutations in individual cuticle collagen genes can cause exoskeletal defects that alter the shape of the animal. The complete sequence of the C. elegans genome indicates upwards of 150 distinct collagen genes that probably contribute to this structure. During the synthesis of this matrix, individual collagen genes are expressed in distinct temporal periods, which might facilitate the formation of specific interactions between distinct collagens.  相似文献   

2.
3.
G N Cox  C Fields  J M Kramer  B Rosenzweig  D Hirsh 《Gene》1989,76(2):331-344
Collagen genes col-6, col-7 (partial), col-8, col-14 and col-19 from the nematode Caenorhabditis elegans were sequenced, and compared to the previously sequenced genes col-1 and col-2. The genes are between 1.0 and 1.2 kb in length, and each includes one or two short introns. The presumptive promoter regions contain sequences similar to the eukaryotic TATA promoter element. Two distinct, conserved sequences were found in the presumptive promoter regions of, respectively, the dauer larva-specific genes col-2 and col-6, and the primarily adult-specific genes col-7 and col-19. The domain structures of the collagen polypeptides are similar: each polypeptide contains two triple-helix forming (Gly-X-Y)n domains, one of 30-33 amino acids (aa), and the other of 127-132 aa. The latter domain is interrupted by one to three short (2-8 aa) non-(Gly-X-Y)n segments that occur at relatively conserved locations in each polypeptide. Sets of cysteine residues flank the (Gly-X-Y)n domains in all of the polypeptides. The genes can be placed into three families based upon amino acid sequence similarities. Genes within a family do not always exhibit similar developmental expression programs, suggesting that structural and regulatory regions of the genes have evolved separately. The codon usage in the genes is highly asymmetrical, with adenine appearing in the third position of 85% of the glycine codons, and 93% of the proline codons.  相似文献   

4.
5.
Several collagen genes have been isolated from the nematode Caenorhabditis elegans. The complete nucleotide sequences of two of these genes, col-1 and col-2, have been determined. These collagen genes differ from vertebrate collagen genes in that they contain only one or two introns, their triple-helical regions are interrupted by nonhelical amino acid sequences and they are smaller. A high degree of nucleotide and amino acid homology exists between col-1 and col-2. In particular, the regions around cysteines and lysines are most highly conserved. The C. elegans genome contains 50 or more collagen genes, the majority of which probably encode cuticle collagens; col-1 and col-2 apparently are members of this large family of cuticle collagen genes.  相似文献   

6.
7.
Ubiquinone (coenzyme Q, Q) is an essential lipid electron carrier in the mitochondria respiratory chain, and also functions as antioxidant and participates as a cofactor of mitochondrial uncoupling proteins. Caernorhabditis elegans synthesize Q9, but both dietary Q8 intake and endogenous Q9 biosynthesis determine Q balance. Thus, it is of current interest to know the regulatory mechanisms of Q9 biosynthesis in this nematode. Here we review results that leaded to identification of genes involved in Q9 biosynthesis in this nematode using the RNA interference technology. C. elegans coq genes were silenced and depletion of Q content was observed, indicating that the genes related here participate in Q9 biosynthesis. Silenced populations showed an extension of adult life span, probably by the decrease of endogenous oxidative stress produced in mitochondria. We also report the heterologous complementation of C. elegans coq-5 and coq-7 genes in their homologue yeast coq null mutants, leading to restore its ability to growth in non-fermentable sugars. These complemented yeast strains accumulated Q6 but also the intermediate demethoxy-Q6. These findings support the conservative functional homology of these genes.  相似文献   

8.
9.
10.
Expression of chimeric genes in Caenorhabditis elegans   总被引:7,自引:0,他引:7  
We have shown the expression of transformed genes in the nematode Caenorhabditis elegans using a new gene fusion system. Vectors consisting of the flanking regions of a collagen gene (col-1) or a major sperm protein gene of C. elegans fused to the Escherichia coli uidA gene, encoding beta-glucuronidase, were microinjected into worms and found to be propagated as high-copy extrachromosomal tandem arrays. We have detected beta-glucuronidase activity in transformed lines, and have shown that the activity is dependent upon the correct reading frame of the construction and on the presence of the worm sequences. The enzyme activity was shown to be encoded by the chimeric beta-glucuronidase gene by co-segregation analysis and by inactivation with specific antisera. Expression is at a very low level, and seems to be constitutive. We have used histochemical techniques to visualize the enzyme activity in embryos.  相似文献   

11.
The sulfation of tyrosine residues is an important post-translational modification involved in the regulation of protein function. We examined the activity of worm tyrosylprotein sulfotransferase (TPST-1) on a typical cuticle collagen, ROL-6, in C. elegans. We verified that TPST-1 sulfates three tyrosine residues of ROL-6 in vitro. We found that these tyrosine residues are important for the secretion of ROL-6::GFP. Mutant ROL-6::GFP proteins that contain more than two substitutions of the target tyrosine residues are severely deficient in cuticle localization. Consistently, knock down of tpst-1 blocked the cuticle localization of ROL-6::GFP. Therefore, the sulfation of ROL-6 by TPST-1 is critical for the proper localization of ROL-6. We also confirmed that worm TPST-1 is localized to the trans-Golgi network (TGN). Our results indicate that TPST-1 regulates cuticle organization by promoting the transport of ROL-6 from the TGN to the cuticle.  相似文献   

12.
13.
Wild-type and mutant actin genes in Caenorhabditis elegans   总被引:6,自引:0,他引:6  
We have sequenced the four actin genes of Caenorhabditis elegans. These four genes encode typical invertebrate actins and are highly homologous, differing from each other by, at most, three amino acid residues. As a first step toward an understanding of the developmental regulation of this gene set we have also sequenced mutant actin genes. The mutant genes were cloned from two independent revertants of a single dominant actin mutant. For both revertants, reversion was accompanied by an actin gene rearrangement. The accumulation of actin mRNA during development in these two revertants is different from that of wild-type animals. We present here a correlation between actin gene structure and expression in wild-type and mutant animals. The results, suggest that co-ordinate regulation of actin genes is not essential for wild-type muscle function. In addition, it appears that changes in the 3' region of at least one of the actin mRNA may affect its steady-state regulation during development.  相似文献   

14.
15.
We have identified and characterized 12 mutations in seven genes that affect the development of the Caenorhabditis elegans hindgut. We find that the mutations can disrupt the postembryonic development of the male-specific blast cells within the hindgut, the hindgut morphology in both males and hermaphrodites, and in some cases, the expression of a hindgut marker in hermaphrodite animals. Mutations in several of the genes also affect viability. On the basis of their mutant phenotypes, we propose that the genes fall into four distinct classes: (1) egl-5 is required for regional identity of the tail; (2) sem-4 is required for a variety of ectodermal and mesodermal cell types, including cells in the hindgut; (3) two genes, lin-49 and lin-59, affect development of many cells, including hindgut; and (4) three genes, mab-9, egl-38, and lin-48, are required for patterning fates within the hindgut, making certain hindgut cells different from others. We also describe a new allele of the Pax gene egl-38 that is temperature sensitive and affects the conserved beta-hairpin of the EGL-38 paired domain. Our results suggest that a combination of different factors contribute to normal C. elegans hindgut development.  相似文献   

16.
Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes   总被引:1,自引:0,他引:1  
The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes.  相似文献   

17.
Collagens are the major protein components of the Caenorhabditis elegans cuticle and are encoded by a large family of 40 to 150 closely related but nonidentical genes. We have determined temporal patterns of mRNA accumulation for a large number of collagen genes by screening recombinant phages and plasmids containing cloned collagen genes under high stringency conditions with 32P-labeled cDNA preparations specific for eggs or three postembryonic molts. We find that collagen mRNA levels are regulated both temporally and quantitatively during C. elegans development. Most genes studied exhibit one of four patterns of mRNA accumulation which correlate with changes in cuticle morphology and collagen protein composition during development. Our results suggest that, in general, there is a progressive activation of new collagen genes during normal development.  相似文献   

18.
19.
Repetitive sequences in Caenorhabditis elegans are interspersed along the holocentric chromosomes. We have physically mapped some of these repetitive families and found that, although the distribution of members of each family is relatively even along the chromosomes, members of more than one family tend to cluster in some locations. We compared the sequence organization of 11 clusters located at known positions on different chromosomes in the N2 strain. These studies allow a comparison between repetitive elements belonging to the same family that are located on the same or on different chromosomes, providing an important tool in the study of genome turnover and evolution.  相似文献   

20.
I L Johnstone  Y Shafi    J D Barry 《The EMBO journal》1992,11(11):3857-3863
Collagens are a family of proteins contributing to the body structure of eukaryotes. They are encoded by a large and diverse gene family in the nematode Caenorhabditis elegans but by only a few genes in vertebrates. We have studied mutant alleles of the C. elegans dpy-7 gene, one of a large group of genes whose mutant phenotype is altered body form and several of which have previously been shown to encode cuticular collagens. We made use of the C. elegans physical map to screen specifically for collagen genes in the region of the X chromosome to which dpy-7 maps. This yielded a wild-type collagen gene clone which we showed, by micro-injection, could repair the dpy-7 mutant phenotype in transgenic animals. We cloned the homologous sequence from four dpy-7 mutant strains and by sequence analysis identified a single mutation in each case. All four mutations result in the substitution of a glycine with a larger residue in the conserved Gly-X-Y collagen domains. Similar substitutions in vertebrate collagens cause the heritable brittle bone disorder osteogenesis imperfecta. Whereas the human mutations are dominant, the dpy-7 mutations are recessive, and this may reflect different levels of complexity of collagenous macromolecular structures in the two organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号