首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多黏菌素是一种膜靶向的脂肽类抗生素,是临床上治疗革兰氏阴性多重耐药菌感染的最后一道防线。通过与脂多糖相互作用,多黏菌素破坏细菌外膜结构并导致细菌死亡。然而,受限于生物化学和结构生物学手段对细胞膜-药物相互作用的表征能力,目前对多黏菌素药理机制的认识还不充分,从而限制了新一代多黏菌素药物的设计和开发。为此,本文总结了近年来利用分子动力学方法对细胞膜系统与多黏菌素相互作用的研究进展,为深入理解多黏菌素药理机制与细胞膜系统的内在联系,加快新型抗生素药物研发提供新思路。  相似文献   

2.
Lipopolysaccharide (LPS) is the major molecular component of the outer membrane of Gram-negative bacteria and serves as a physical barrier providing the bacteria protection from its surroundings. LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion, responsible for the development of inflammatory response, and in extreme cases to endotoxic shock. Because of these functions, the interaction of LPS with LPS binding molecules attracts great attention. One example of such molecules are antimicrobial peptides (AMPs). These are large repertoire of gene-encoded peptides produced by living organisms of all types, which serve as part of the innate immunity protecting them from pathogen invasion. AMPs are known to interact with LPS with high affinities. The biophysical properties of AMPs and their mode of interaction with LPS determine their biological function, susceptibility of bacteria to them, as well as the ability of LPS to activate the immune system. This review will discuss recent studies on the molecular mechanisms underlying these interactions, their effects on the resistance of the bacteria to AMPs, as well as their potential to neutralize LPS-induced endotoxic shock.  相似文献   

3.
Lipopolysaccharide (LPS) is the major molecular component of the outer membrane of Gram-negative bacteria and serves as a physical barrier providing the bacteria protection from its surroundings. LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion, responsible for the development of inflammatory response, and in extreme cases to endotoxic shock. Because of these functions, the interaction of LPS with LPS binding molecules attracts great attention. One example of such molecules are antimicrobial peptides (AMPs). These are large repertoire of gene-encoded peptides produced by living organisms of all types, which serve as part of the innate immunity protecting them from pathogen invasion. AMPs are known to interact with LPS with high affinities. The biophysical properties of AMPs and their mode of interaction with LPS determine their biological function, susceptibility of bacteria to them, as well as the ability of LPS to activate the immune system. This review will discuss recent studies on the molecular mechanisms underlying these interactions, their effects on the resistance of the bacteria to AMPs, as well as their potential to neutralize LPS-induced endotoxic shock.  相似文献   

4.
Tsubery H  Ofek I  Cohen S  Fridkin M 《Peptides》2001,22(10):1675-1681
Polymyxin B (PMB) is a potent antibacterial lipopeptide composed of a positively charged cyclic peptide ring and a fatty acid containing tail. Polymyxin B nonapeptide (PMBN), the deacylated amino derivative of polymyxin B, is much less bactericidal but able to permeabilize the outer membrane of Gram-negative bacteria and to neutralize the toxic effects of lipopolysaccharide (LPS). In this study, we synthesized and evaluated the antibacterial and LPS neutralizing activities of four PMBN analogs modified at their N-terminal. Our results suggest that oligoalanyl substitutions of PMBN do not effect most of PMBN activities. However, a hydrophobic aromatic substitution generated a PMB-like molecule with high antibacterial activity and significant reduced toxicity.  相似文献   

5.
Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin.  相似文献   

6.
Short cationic lipopeptides are amphiphilic molecules that exhibit antimicrobial activity mainly against Gram-positives. These compounds bind to bacterial membranes and disrupt their integrity. Here we examine the structure-activity relation (SAR) of lysine-based lipopeptides, with a prospect to rationally design more active compounds. The presented study aims to explain how antimicrobial activity of lipopeptides is affected by the charge of lipopeptide headgroup and the length of lipopeptide acyl chain. The obtained SAR models suggest that the lipophilicity of short synthetic cationic lipopeptides is the major factor that determines their antimicrobial activities. In order to link the differences in antimicrobial activity to the mechanism of action of lipopeptides containing one and two hydrophobic chains, we additionally performed molecular dynamic (MD) simulations. By using combined coarse-grained and all-atom simulations we also show that these compounds neither affect the organization of the membrane lipids nor aggregate to form separate phases. These results, along with the onset of antimicrobial activity of lipopeptides well below the critical micelle concentration (CMC), indicate that lipopeptides do not act in a simple detergent-like manner.  相似文献   

7.
Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria. This essentiality, coupled with the conservation of the synthetic pathway across species and recent breakthroughs in our understanding of transport and membrane homeostasis has made LPS an attractive target for novel antibiotic drug development. Several different targets have been explored and small molecules developed that show promising activity in vitro. However, these endeavours have met limited success in clinical testing and the polymyxins, discovered more than 70 years ago, remain the only LPS-targeting drugs to enter the clinic thus far. In this review, we will discuss efforts to develop therapeutic inhibitors of LPS synthesis and transport and the reasons for limited success, and explore new developments in understanding polymyxin mode of action and the identification of new analogues with reduced toxicity and enhanced activity.  相似文献   

8.
Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4. These TLR2-expressing cells were also stimulated by living motile B. burgdorferi, suggesting that TLR2 recognition of lipoproteins is relevant to natural Borrelia infection. Importantly, a TLR2 antibody inhibited bacterial lipoprotein/lipopeptide-induced tumor necrosis factor release from human peripheral blood mononuclear cells, and TLR2-null Chinese hamster macrophages were insensitive to lipoprotein/lipopeptide challenge. The data suggest a role for the native protein in cellular activation by these ligands. In addition, TLR2-dependent responses were seen using whole Mycobacterium avium and Staphylococcus aureus, demonstrating that this receptor can function as a signal transducer for a wide spectrum of bacterial products. We conclude that diverse pathogens activate cells through TLR2 and propose that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion.  相似文献   

9.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

10.
Rosenfeld Y  Sahl HG  Shai Y 《Biochemistry》2008,47(24):6468-6478
Endotoxin [lipopolysaccharide (LPS)] covers more than 90% of the outer monolayer of the outer membrane of Gram-negative bacteria, and it plays a dual role in its pathogenesis: as a protective barrier against antibiotics and as an effector molecule, which is recognized by and activates the innate immune system. The ability of host-defense antimicrobial peptides to bind LPS on intact bacteria and in suspension has been implicated in their antimicrobial and LPS detoxification activities. However, the mechanisms involved and the properties of the peptides that enable them to traverse the LPS barrier or to neutralize LPS endotoxic activity are not yet fully understood. Here we investigated a series of antimicrobial peptides and their analogues with drastically altered sequences and structures, all of which share the same amino acid composition (K 6L 9). The list includes both all- l-amino acid peptides and their diastereomers (composed of both l- and d-amino acids). The peptides were investigated functionally for their antibacterial activity and their ability to block LPS-dependent TNF-alpha secretion by macrophages. Fluorescence spectroscopy and transmission electron microscopy were used to detect their ability to bind LPS and to affect its oligomeric state. Their secondary structure was characterized in solution, in LPS suspension, and in LPS multibilayers by using CD and FTIR spectroscopy. Our data reveal specific biophysical properties of the peptides that are required to kill bacteria and/or to detoxify LPS. Besides shedding light on the mechanisms of these two important functions, the information gathered should assist in the development of AMPs with potent antimicrobial and LPS detoxification activities.  相似文献   

11.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

12.
Antimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E. coli contains two membranes with differing compositions. To this end, we report the first molecular dynamics simulation study of the interaction of the antimicrobial peptide, polymyxin B1 with complex models of both the inner and outer membranes of E. coli. The results of >16 microseconds of simulation predict that polymyxin B1 is likely to interact with the membranes via distinct mechanisms. The lipopeptides aggregate in the lipopolysaccharide headgroup region of the outer membrane with limited tendency for insertion within the lipid A tails. In contrast, the lipopeptides readily insert into the inner membrane core, and the concomitant increased hydration may be responsible for bilayer destabilization and antimicrobial function. Given the urgent need to develop novel, potent antibiotics, the results presented here reveal key mechanistic details that may be exploited for future rational drug development.  相似文献   

13.
LPS binding protein (LBP) is an acute-phase protein synthesized predominantly in the liver of the mammalian host. It was first described to bind LPS of Gram-negative bacteria and transfer it via a CD14-enhanced mechanism to a receptor complex including TLR-4 and MD-2, initiating a signal transduction cascade leading to the release of proinflammatory cytokines. In recent studies, we found that LBP also mediates cytokine induction caused by compounds derived from Gram-positive bacteria, including lipoteichoic acid and peptidoglycan fragments. Lipoproteins and lipopeptides have repeatedly been shown to act as potent cytokine inducers, interacting with TLR-2, in synergy with TLR-1 or -6. In this study, we show that these compounds also interact with LBP and CD14. We used triacylated lipopeptides, corresponding to lipoproteins of Borrelia burgdorferi, mycobacteria, and Escherichia coli, as well as diacylated lipopeptides, corresponding to, e.g., 2-kDa macrophage activating lipopeptide of Mycoplasma spp. Activation of Chinese hamster ovary cells transfected with TLR-2 by both lipopeptides was enhanced by cotransfection of CD14. Responsiveness of human mononuclear cells to these compounds was greatly enhanced in the presence of human LBP. Binding of lipopeptides to LBP as well as competitive inhibition of this interaction by LPS was demonstrated in a microplate assay. Furthermore, we were able to show that LBP transfers lipopeptides to CD14 on human monocytes using FACS analysis. These results support that LBP is a pattern recognition receptor transferring a variety of bacterial ligands including the two major types of lipopeptides to CD14 present in different receptor complexes.  相似文献   

14.
Lipopolysaccharides (LPS) are unique cell wall components of gram-negative bacteria. They represent amphiphilic biopolymeric compounds combining in a single molecule hydrophilic (O-specific chains, core oligosaccharide, etc.) and hydrophobic (lipid A) entities. LPS play a crucial role in various interactions between micro- and macroorganisms and display a broad range of biological activities including toxic activity and ability to activate immune cells. Biological activities of LPS are based on their ability to bind with high affinity to mammalian proteins, e.g., lipoproteins, bactericidal permeability-increasing proteins, lysozyme, etc., and thus to neutralize toxic effects of endotoxins. LPS are specific targets for antimicrobial polycationic compounds used in the therapy of bacterial infections. Studies of mechanisms of toxic effects of LPS culminated in the development of novel approaches to LPS neutralization. One of them is based on the use of compounds able to neutralize LPS toxicity at the expense of formation of macromolecular complexes with them. This approach is highly specific and has no effect on functional activity of antipathogenic defense mechanisms of the host. Interaction of LPS with various classes of cationic amphiphilic molecules including proteins, peptides, and polyamines was the subject of intensive studies in the past decade. Binding of cationic polymers is provided by electrostatic interactions between LPS and negatively charged phosphate and carboxylic groups of LPS localized in lipid A core. The present study is an overview of recently published data on different mechanisms of interactions of LPS with soluble proteins and polycations and modification of physiological activity of LPS.  相似文献   

15.
The dual role of lipopolysaccharide as effector and target molecule.   总被引:1,自引:0,他引:1  
Lipopolysaccharides (LPS) are major integral components of the outer membrane of Gram-negative bacteria being exclusively located in its outer leaflet facing the bacterial environment. Chemically they consist in different bacterial strains of a highly variable O-specific chain, a less variable core oligosaccharide, and a lipid component, termed lipid A, with low structural variability. LPS participate in the physiological membrane functions and are, therefore, essential for bacterial growth and viability. They contribute to the low membrane permeability and increase the resistance towards hydrophobic agents. They are also the primary target for the attack of antibacterial drugs and proteins such as components of the host's immune response. When set free LPS elicit, in higher organisms, a broad spectrum of biological activities. They play an important role in the manifestation of Gram-negative infection and are therefore termed endotoxins. Physico-chemical parameters such as the molecular conformation and the charges of the lipid A portion, which is responsible for endotoxin-typical biological activities and is therefore termed the 'endotoxic principle' of LPS, are correlated with the biological activity of chemically different LPS.  相似文献   

16.
Gram-negative bacteria are bounded by two membranes. The outer membrane consists of phospholipids, lipopolysaccharides, lipoproteins and integral outer membrane proteins, all of which are synthesized in the cytoplasm. Recently, much progress has been made in the elucidation of the mechanisms of transport of these molecules over the inner membrane, through the periplasm and into the outer membrane, in part by exploiting the extraordinary capacity of Neisseria meningitidis to survive without lipopolysaccharide.  相似文献   

17.
Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2   总被引:21,自引:0,他引:21  
Toll-like receptors (TLRs) are pathogen recognition molecules that activate the immune system as part of the innate immune response. Microbial recognition by TLRs plays a crucial role in the host immune system's decision to respond or not to a particular microbial infection. Lipopolysaccharide (LPS), a membrane glycolipid of Gram-negative bacteria, exhibits strong immunostimulating activity among TLR ligands and has been studied in great detail. Recent studies have shown that cell surface TLR4-MD-2 physically interacts with LPS and triggers the release of an LPS signal, revealing a host-pathogen interaction mediated by TLR.  相似文献   

18.
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.  相似文献   

19.
Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity.  相似文献   

20.
Gram-negative bacteria such as Escherichia coli have an inner membrane and an asymmetric outer membrane (OM) that together protect the cytoplasm and act as a highly selective permeability barrier. Lipopolysaccharide (LPS) is the major component of the outer leaflet of the OM and is essential for the survival of nearly all Gram-negative bacteria. Recent advances in understanding the proteins involved in the transport of LPS across the periplasm and into the outer leaflet of the OM include the identification of seven proteins suggested to comprise the LPS transport (Lpt) system. Crystal structures of the periplasmic Lpt protein LptA have recently been reported and show that LptA forms oligomers in either an end-to-end arrangement or a side-by-side dimer. It is not known if LptA oligomers bridge the periplasm to form a large, connected protein complex or if monomeric LptA acts as a periplasmic shuttle to transport LPS across the periplasm. Therefore, the studies presented here focus specifically on the LptA protein and its oligomeric arrangement and concentration dependence in solution using experimental data from several biophysical approaches, including laser light scattering, crosslinking, and double electron electron resonance spectroscopy. The results of these complementary techniques clearly show that LptA readily associates into stable, end-to-end, rod-shaped oligomers even at relatively low local protein concentrations and that LptA forms a continuous array of higher order oligomeric end-to-end structures as a function of increasing protein concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号