首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs.

Methods

Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR.

Results

TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix.

Conclusion

Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides.

General significance

The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.  相似文献   

2.
The widespread natural sources‐derived cationic peptides have been reported to reveal bacterial killing and/or growth‐inhibiting properties. Correspondingly, a number of artificial peptides have been designed to understand antibacterial mechanism of the cationic peptides. These peptides are expected to be an alternative antibiotic against drug‐resistant pathogenic bacteria because major antimicrobial mechanism of cationic peptides involves bacterial membrane disorder, although those availabilities have not been well evaluated. In this study, cationic peptides containing Aib were prepared to evaluate the availability as an antimicrobial agent, especially against representative pathogenic bacteria. Among them, BRBA20, consisting of five repeated Aib‐Arg‐Aib‐Ala sequences, showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus. Additionally, growth of Serratia marcescens and multidrug‐resistant Pseudomonas aeruginosa, known as proteases‐secreting pathogenic bacteria, were also completely inhibited by BRBA20 under 20 µg/ml peptide concentrations. Our results suggested availabilities of Aib‐derived amphiphilicity and protease resistance in the design of artificial antimicrobial peptides. Comparing BRBA20 with BKBA20, it was also concluded that Arg residue is the preferred cationic source than Lys for antimicrobial action of amphiphilic helices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
In keeping with recent efforts to generate compounds for antibiotic and microbicide development, we focused on the creation of non‐natural organo‐peptide hybrids of antimicrobial peptide amides (KLK(L)nKLK‐NH2) derived from sapecin B and a self‐assembling oligoglycine organo‐peptide bolaphile containing an ω‐amino fatty acid residue. The hybrid organo‐peptide bolaphiles with two cationic KLK tripeptide motifs linked with an ω‐amino acid residue (penta‐, octa‐ or undecamethylene chain) maintained the self‐assembling properties of the root oligoglycine bolaphile. Electron microscopy clearly revealed complex supramolecular architectures for both sapecin B‐derived peptides and the hybrid analogues. FT‐IR spectroscopy indicated that the supramolecular structures were composed primarily of β‐sheets. CD revealed that the hybrid bolaphiles did not share the same secondary structures as the sapecin B peptides in solution. However, although secondary structures of antimicrobial peptides are central in the activity, the organo‐peptide bolaphiles also retained the potent antimicrobial activity of the leader sapecin B‐derived peptide against both Gram‐positive and Gram‐negative bacteria. In general, the hybrids were more selective than the sapecin B peptides, as they displayed little or no appreciable haemolytic activity. The results obtained herald a new approach for the design of purpose‐built hybrid organo‐peptide bolaphiles. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The antimicrobial activity of five samples of Taxandria fragrans essential oil was evaluated against a range of Gram‐positive (n= 26) and Gram‐negative bacteria (n= 39) and yeasts (n= 10). The majority of organisms were inhibited and/or killed at concentrations ranging from 0.06–4.0% v/v. Geometric means of MIC were lowest for oil Z (0.77% v/v), followed by oils X (0.86%), C (1.12%), A (1.23%) and B (1.24%). Despite differences in susceptibility data between oils, oils A and X did not differ when tested at 2% v/v in a time kill assay against Staphylococcus aureus. Cytotoxicity assays using peripheral blood mononuclear cells demonstrated that T. fragrans oil was cytotoxic at 0.004% v/v but not at 0.002%. Exposure to one or more of the oils at concentrations of ≤0.002% v/v resulted in a dose responsive reduction in the production of proinflammatory cytokines IL‐6 and TNF‐α, regulatory cytokine IL‐10, Th1 cytokine IFN‐γ and Th2 cytokines IL‐5 and IL‐13 by PHA stimulated mononuclear cells. Oil B inhibited the production of all cytokines except IL‐10, oil X inhibited TNF‐α, IL‐6 and IL‐10, oil A inhibited TNF‐α and IL‐6, oil C inhibited IL‐5 and IL‐6 and oil Z inhibited IL‐13 only. IL‐6 production was significantly inhibited by the most oils (A, B, C and X), followed by TNF‐α (oils A, B and X). In conclusion, T. fragrans oil showed both antimicrobial and anti‐inflammatory activity in vitro, however, the clinical relevance of this remains to be determined.  相似文献   

6.
In this study, two novel antimicrobial peptides from the skin secretions of the marsh frog, Rana ridibunda, named temporin‐Ra and temporin‐Rb, were identified and purified using RP‐HPLC. Temporin‐Ra and temporin‐Rb are composed of 14 and 12 amino acids, respectively. Our results show that these peptides have inhibitory effects on both gram‐negative and gram‐positive bacteria, especially antibiotic resistant strains prevalent in hospitals, such as Staphylococcus aureus and Streptococcus agalactiae. The sequences and molecular weights of these peptides were determined using tandem MS. The molecular masses were found to be 1242.5 Da for temporin‐Rb and 1585.1 Da for temporin‐Ra. Human red blood cells tolerated well exposure to temporin‐Ra and temporin‐Rb, which, at a concentration of 60 µg/ml, induced 1.3% and 1.1% hemolysis, respectively. MIC values of these peptides are suitable for potent antimicrobial peptides. The low hemolytic effect and wide‐spectrum antimicrobial activity suggest a possible therapeutic application of these novel peptides. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Recent surveillance data on antimicrobial resistance predict the beginning of the post‐antibiotic era with pan‐resistant bacteria even overcoming polymyxin as the last available treatment option. Thus, new substances using novel modes of antimicrobial action are urgently needed to reduce this health threat. Antimicrobial peptides are part of the innate immune system of most vertebrates and invertebrates and accepted as valid substances for antibiotic drug development efforts. Especially, short proline‐rich antimicrobial peptides (PrAMP) of insect origin have been optimized for activity against Gram‐negative strains. They inhibit protein expression in bacteria by blocking the 70S ribosome exit tunnel (oncocin‐type) or the assembly of the 50S subunit (apidaecin‐type binding). Thus, apidaecin analog Api137 and oncocin analog Onc112 supposedly bind to different nearby or possibly partially overlapping binding sites. Here, we synthesized Api137/Onc112‐conjugates bridged by ethylene glycol spacers of different length to probe synergistic activities and binding modes. Indeed, the antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa improved for some constructs, although the conjugates did not bind better to the 70S ribosome of E. coli than Api137 and Onc112 using 5(6)‐carboxyfluorescein‐labelled Api137 and Onc112 in a competitive fluorescence polarization assay. In conclusion, Api137/Onc112‐conjugates showed increased antimicrobial activities against P. aeruginosa and PrAMP‐susceptible and ‐resistant E. coli most likely because of improved membrane interactions, whereas the interaction to the 70S ribosome was most likely not improved relying still on the independent apidaecin‐ and oncocin‐type binding modes. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
A novel antimicrobial peptide, designated macropin (MAC‐1) with sequence Gly‐Phe‐Gly‐Met‐Ala‐Leu‐Lys‐Leu‐Leu‐Lys‐Lys‐Val‐Leu‐NH2, was isolated from the venom of the solitary bee Macropis fulvipes. MAC‐1 exhibited antimicrobial activity against both Gram‐positive and Gram‐negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l ‐ or d ‐lysine in selected positions. Furthermore, all‐d analog and analogs with d ‐amino acid residues introduced at the N‐terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α‐helical secondary structure in the presence of trifluoroethanol or membrane‐mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure–activity relationship for the effect of d ‐amino acid substitutions in MAC‐1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The Andrias davidianus has been known as a traditional Chinese medicine for a long time. Its blood is considered as a waste or by‐product of the meat production industry. Although there are reports on isolation of the antimicrobial peptides from different resources, there are no reports of their isolation from A. davidianus blood. In this work, an antimicrobial peptide, andricin B, was isolated from the blood of A. davidianus by an innovative method in which the magnetic liposome adsorption was combined with reversed‐phase high‐performance liquid chromatography. The structure, antimicrobial activity and safety of andricin B were further investigated. Amino acid sequence was determined by N‐terminal sequencing and found to be Gly‐Leu‐Thr‐Arg‐Leu‐Phe‐Ser‐Val‐Ile‐Lys. Circular dichroism (CD) spectra and prediction of three‐dimensional structure by bioinformatics software suggested the presence of a well‐defined random coil conformation. Andricin B was found to be active against all bacteria tested in this study as well as some fungi. The minimum inhibitory concentrations (MICs) were in the range 8–64 μg ml?1. Moreover, the haemolytic testing also suggested that andricin B could be considered safe at the MICs. Finally, andricin B was shown to inhibit the growth of Staphylococcus aureus in the cooked meat of A. davidianus. This study shows that andricin B is a promising novel antimicrobial peptide that may provide further insights towards the development of new drugs.

Significance and Impact of the Study

This is the pioneer study on screening and isolation of antimicrobial peptide from the blood of Andrias davidianus. Here, we have developed a novel method by combining magnetic liposomes adsorption with reversed‐phase high‐performance liquid chromatography to purify and screen the antimicrobial peptides. From this screen, we identified a novel antimicrobial peptide which we name as andricin B. Andricin B is unique as it checks the growth of both Gram‐positive and Gram‐negative bacteria as well as few fungal species.  相似文献   

12.
Gorr SU  Sotsky JB  Shelar AP  Demuth DR 《Peptides》2008,29(12):2118-2127
Parotid secretory protein (PSP) (SPLUNC2), a potential host-defense protein related to bactericidal/permeability-increasing protein (BPI), was used as a template to design antibacterial peptides. Based on the structure of BPI, new PSP peptides were designed and tested for antibacterial activity. The peptides did not exhibit significant bactericidal activity or inhibit growth but the peptide GL-13 induced bacterial matting, suggesting passive agglutination of bacteria. GL-13 was shown to agglutinate the Gram negative bacteria Pseudomonas aeruginosa and Aggregatibacter (Actinobacillus) actinomycetemcomitans, Gram positive Streptococcus gordonii and uncoated sheep erythrocytes. Bacterial agglutination was time and dose-dependent and involved hydrophobic interactions. Variant forms of GL-13 revealed that agglutination also depended on the number of amine groups on the peptide. GL-13 inhibited the adhesion of bacteria to plastic surfaces and the peptide prevented the spread of P. aeruginosa infection in a lettuce leaf model, suggesting that GL-13 is active in vivo. Moreover, GL-13-induced agglutination enhanced the phagocytosis of P. aeruginosa by RAW 264.7 macrophage cells. These results suggest that GL-13 represents a class of antimicrobial peptides, which do not directly kill bacteria but instead reduce bacterial adhesion and promote agglutination, leading to increased clearance by host phagocytic cells. Such peptides may cause less bacterial resistance than traditional antibiotic peptides.  相似文献   

13.
The emergence of strains of multidrug‐resistant Gram‐negative bacteria mandates a search for new types of antimicrobial agents. Alyteserin‐2a (ILGKLLSTAAGLLSNL.NH2) is a cationic, α‐helical peptide, first isolated from skin secretions of the midwife toad, Alytes obstetricans, which displays relatively weak antimicrobial and haemolytic activities. Increasing the cationicity of alyteserin‐2a while maintaining amphipathicity by the substitution Gly11→ Lys enhanced the potency against both Gram‐negative and Gram‐positive bacteria by between fourfold and 16‐fold but concomitantly increased cytotoxic activity against human erythrocytes by sixfold (mean concentration of peptide producing 50% cell death; LC50 = 24 µm ). Antimicrobial potency was increased further by the additional substitution Ser7→Lys, but the resulting analogue remained cytotoxic to erythrocytes (LC50 = 38 µm ). However, the peptide containing d ‐lysine at positions 7 and 11 showed high potency against a range of Gram‐negative bacteria, including multidrug‐resistant strains of Acinetobacter baumannii and Stenotrophomonas maltophilia (minimum inhibitory concentration = 8 µm ) but appreciably lower haemolytic activity (LC50 = 185 µm ) and cytotoxicity against A549 human alveolar basal epithelial cells (LC50 = 65 µm ). The analogue shows potential for treatment of nosocomial pulmonary infections caused by bacteria that have developed resistance to commonly used antibiotics. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Previously, we described the design and synthesis of three nine‐residue AMPs, P9Nal(SS), P9Trp(SS), and P9Nal(SR), showing high stability in serum and broad spectrum antimicrobial activity. The peptides P9Trp(SS) and P9Nal(SR) differ from P9Nal(SS) for the replacement of the two 2Nal residues with Trp residues and for the replacement of the two Cys (StBu) with Cys (tBu) residues, respectively. These changes led to peptides with a lower hydrophobicity respect to the P9Nal(SS). Interestingly, the three peptides have very similar activity against Gramnegative bacteria. Instead, they exhibit a significant difference towards Gram‐positive bacteria, being P9Nal(SS) the most active. In order to evaluate the impact of amino acids substitution on membranotropic activity and rationalize the observed effects in vivo, here, we report the detailed biophysical characterization of the interaction between P9Nal(SR) and P9Trp(SS) and liposomes by combining differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The comparison with the results for the previously characterized P9Nal(SS) peptide reveals similarities and differences on the interaction process and perturbation activities. It was found that the three peptides can penetrate at different extent inside the bilayer upon changing their conformation and inducing lipid domains formation, revealing that the formation of lipid domains is fundamental for the activity against Gram‐negative bacteria. On the contrary, the dissimilar activity against Gram‐positive bacteria well correlate with the different affinity of peptides for the lipoteichoic acid, a component selectively present in the cell wall of Gram‐positive bacteria.  相似文献   

15.
Proliferation of Propionibacterium acnes (P. acnes) is one of the main pathogenetic mechanisms of acne. Antimicrobial peptides with low‐drug resistance and nonresidual are potential anti‐acne agents. In this study, two antimicrobial peptides named temporin‐1Dra and moronecidin were synthesized and tested their antimicrobial activity against P. acnes in vitro and in vivo. These two peptides inhibited the growth of Escherichia coli, Staphylococcus aureus, Candida albicans, and P. acnes. The minimal inhibitory concentrations (MICs) of temporin‐1Dra and moronecidin to P. acnes were 30 and 10 μM, respectively. Both peptides exhibited strong resistance to heat and pH, but no obvious cytotoxicity to HaCaT cells. They also displayed persistent antimicrobial activities in the microbial challenge test. In the P. acnes‐induced inflammation mouse model, moronecidin significantly decreased the ear swelling thickness in a concentration‐dependent manner. At the 14th day after injection, 20 μg/day moronecidin reduced the ear swelling thickness to 46.15 ± 5.23% compared with the normal cream group. Tissue staining showed that moronecidin effectively reduced abscess and thickness of the dermis layer. Our results indicate that the antimicrobial peptide moronecidin could be developed as a potential natural anti‐acne agent in the cosmetics or pharmaceutical industries.  相似文献   

16.
Background:  Helicobacter pylori is a spiral‐shaped Gram‐negative microaerophilic bacterium associated with a number of gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. Several studies have implicated a Th17 response as a key to protective immunity against Helicobacter. Materials and Methods:  Wild type (WT) and MyD88‐deficient (MyD88?/?) mice in the C57BL/6 background were infected with H. felis for 6 and 25 weeks and colonization density and host response evaluated. Real‐time PCR was used to determine the expression of cytokines and antimicrobial peptides in the gastric tissue of mice. Results:  mRNA expression levels of the Th17 cytokines interleukin‐17A (IL‐17A) and IL‐22 were markedly up‐regulated in WT compared with MyD88?/? mice both at 6 and at 25 weeks in response to infection with H. felis, indicating that induction of Th17 responses depends on MyD88 signaling. Furthermore, reduction in the expression of Th17‐dependent intestinal antimicrobial peptide lipocalin‐2 was linked with increased bacterial burden in the absence of MyD88 signaling. Conclusion:  We provide evidence showing that MyD88‐dependent signaling is required for the host to induce a Th17 response for the control of Helicobacter infection.  相似文献   

17.
Tailored nanoparticles offer a novel approach to fight antibiotic‐resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram‐negative Stenotrophomonas maltophilia [Sm‐SeNPs(?)] and Gram‐positive Bacillus mycoides [Bm‐SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm‐SeNPs(?) and Bm‐SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch‐SeNPs). Dendritic cells and fibroblasts exposed to Sm‐SeNPs(?), Bm‐SeNPs(+) and Ch‐SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro‐inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents.  相似文献   

18.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A novel antimicrobial peptide derived from ovalbumin has been discovered. First, the peptide fragment RKIKVYLPRMK (TK9.1) was identified based on computerized predictions of the secondary structure of peptides in a protein data bank. Using HeliQuest, the sequence was developed into RKIKRYLRRMI (TK9.1.3), which was synthesized using Fmoc‐solid phase peptide synthesis, and found to have strongly antimicrobial activity against Gram‐positive and Gram‐negative bacteria, and fungi but not cytotoxic to HeLa cells and hemolysis in mouse red blood cells. Although ovalbumin itself does not have an antibacterial activity, our results suggest that it may supply the organisms that consume it with antimicrobial peptides, in support of their immunodefence.  相似文献   

20.
Aims: The goal of this study was to determine inhibitory effect of palm kernel expeller (PKE) peptides of different degree of hydrolysis (DH %) against spore‐forming bacteria Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophillus, Bacillus subtilis, Bacillus thuringiensis, Clostridium perfringens; and non‐spore‐forming bacteria Escherichia coli, Lisinibacillus sphaericus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium and Staphylococcus aureus. Methods and Results: A range of DH % (50–100) of PKE peptides was prepared using alcalase, and hydrolysis conditions were determined using response surface methodology (RSM). The influence of pH (6·5–10·5), temperature (35–65°C), enzyme/substrate ratio (1–5%) and substrate concentration (1–2%) were studied on the response of the DH. The antibacterial activity of different DH % of PKE peptides was tested by using disc diffusion assay and micro‐broth dilution assay. According to the minimum inhibitory concentration (MIC) test on each of the PKE peptides of different DH %, the 70 DH % PKE peptide showed greater inhibitory effect compared to the 100 DH % PKE peptide against B. cereus, B. coagulans, B. megaterium, B. pumilus, B. stearothermophillus, B. subtilis, B. thuringiensis, Cl. perfringens, Lisinibacillus sphaericus and L. monocytogenes. Conclusions: The 70 DH % PKE peptides exhibited greatest overall antibacterial effect of the various peptides of PKE evaluated. Further research is needed to determine the mode of action of PKE peptides. Significance and Impact of the Study: Palm kernel expeller peptides, a natural plant product, effectively inhibited the growth of spore‐forming and non‐spore‐forming Gram‐positive bacteria. Potentially, PKE peptides could be used in food preservation and developed as antibacterial agent in the pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号