首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site‐specific labeling of synthetic peptides carrying N‐methoxyglycine (MeOGly) by isothiocyanate is demonstrated. A nonapeptide having MeOGly at its N‐terminus was synthesized by the solid‐phase method and reacted with phenylisothiocyanate under various conditions. In acidic solution, the reaction specifically gave a peptide having phenylthiourea structure at its N‐terminus, leaving side chain amino group intact. The synthetic human β‐defensin‐2 carrying MeOGly at its N‐terminus or the side chain amino group of Lys10 reacted with phenylisothiocyanate or fluorescein isothiocyanate also at the N‐methoxyamino group under the same conditions, demonstrating that this method is generally useful for the site‐specific labeling of linear synthetic peptides as well as disulfide‐containing peptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
DKP formation is a serious side reaction during the solid‐phase synthesis of peptide acids containing either Pro or Gly at the C‐terminus. This side reaction not only leads to a lower overall yield, but also to the presence in the reaction crude of several deletion peptides lacking the first amino acids. For the preparation of protected peptides using the Fmoc/tBu strategy, the use of a ClTrt‐Cl‐resin with a limited incorporation of the C‐terminal amino acid is the method of choice. The use of resins with higher loading levels leads to more impure peptide crudes. The use of HPLC‐ESMS is a useful method for analysing complex samples, such as those formed when C‐terminal Pro peptides are prepared by non‐optimized solid‐phase strategies. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
For larger proteins, and proteins not amenable to expression in bacterial hosts, it is difficult to deduce structures using NMR methods based on uniform 13C, 15N isotopic labeling and observation of just nuclear Overhauser effects (NOEs). In these cases, sparse labeling with selected 15N enriched amino acids and extraction of a wider variety of backbone-centered structural constraints is providing an alternate approach. A limitation, however, is the absence of resonance assignment strategies that work without uniform 15N, 13C labeling or preparation of numerous samples labeled with pairs of isotopically labeled amino acids. In this paper an approach applicable to a single sample prepared with sparse 15N labeling in selected amino acids is presented. It relies on correlation of amide proton exchange rates, measured from data on the intact protein and on digested and sequenced peptides. Application is illustrated using the carbohydrate binding protein, Galectin-3. Limitations and future applications are discussed.  相似文献   

4.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
We describe a procedure that allows for very efficient identification of amino acid types in proteins by selective 15N-labeling. The usefulness of selective incorporation of 15N-labeled amino acids into proteins for the backbone assignment has been recognized for several years. However, widespread use of this method has been hindered by the need to purify each selectively labeled sample and by the relatively high cost of labeling with 15N-labeled amino acids. Here we demonstrate that purification of the selectively 15N-labeled samples is not necessary and that background-free HSQC spectra containing only the peaks of the overexpressed heterologous protein can be obtained in crude lysates from as little as 100 ml cultures, thus saving time and money. This method can be used for fast and automated backbone assignment of proteins.  相似文献   

6.
Protein synthesis can be estimated by measuring the incorporation of a labeled amino acid into a proteolytic peptide. Although prelabeled amino acids are typically administered, recent studies have tested 2H2O; the assumption is that there is rapid equilibration of 2H (in body water) with the carbon-bound hydrogens of amino acids before those amino acids are incorporated into a protein(s). We have determined the temporal changes in 2H labeling of body water and amino acids which should build confidence in 2H2O-based studies of protein synthesis when one aims to measure the 2H labeling of proteolytic peptides.  相似文献   

7.
A procedure for the synthesis of a11C‐labeled oligopeptide containing [1‐11C]1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid ([1‐11C]Tpi) from the corresponding Trp?HCl‐containing peptides has been developed involving a Pictet‐Spengler reaction with [11C]formaldehyde. The synthesis of [1‐11C]Tpi from Trp and [11C]formaldehyde was examined as a model reaction with the aim of developing a facile and effective method for the labeling of peptides with carbon‐11. The Pictet‐Spengler reaction of Trp and [11C]formaldehyde in acidic media (TsOH or HCl) afforded the desired [1‐11C]Tpi in a moderate radiochemical yield. Herein, the application of a Pictet‐Spengler reaction to an aqueous solution of Trp?HCl gave the desired product with a radiochemical yield of 45.2%. The RGD peptide cyclo[Arg‐Gly‐Asp‐D‐Tyr‐Lys] was then selected as a substrate for the labeling reaction with [11C]formaldehyde. The radiolabeling of a Trp?HCl‐containing RGD peptide using the Pictet‐Spengler reaction was successful. Furthermore, the remote‐controlled synthesis of a [1‐11C]Tpi‐containing RGD peptide was attempted by using an automatic production system to generate [11C]CH3I. The radiochemical yield of the [1‐11C]Tpi‐containing RGD at the end of synthesis (EOS) was 5.9 ± 1.9% (n = 4), for a total synthesis time of about 35 min. The specific activity was 85.7 ± 9.4 GBq/µmol at the EOS. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Regulatory pressure has compelled the chemical manufacturing industry to reduce the use of organic solvents in synthetic chemistry, and there is currently a strong focus on replacing these solvents with water. Here, we describe an efficient in‐water solution‐phase peptide synthesis method using Boc‐amino acids. It is based on a coupling reaction utilizing suspended water‐dispersible nanoparticle reactants. Using this method, peptides were obtained in good yield and with high purity. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
N‐terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N‐amidino‐amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block—N‐amidino‐pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N‐amidino‐proline using RuO4 did not produce positive results, N‐amidino‐Glp‐Phe‐OH was synthesized on Wang polymer by cyclization of α‐guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N‐amidino‐Glp‐Phe‐OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N‐amidino‐Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
We report in this work on the robustness of ultrasonic energy as a tool to speed the isotopic labeling of proteins using the 18O‐decoupling procedure. The first part of the decoupling procedure, comprising protein denaturation, reduction, alkylation and digestion, is done in 8 min under the effects of an ultrasonic field whilst the second part, the isotopic labeling, was assayed with and without the use of ultrasonic energy. Our results clearly demonstrate that the 18O‐isotopic labeling in a decoupling procedure cannot be accelerated using an ultrasonic field.  相似文献   

11.
The solvatochromic IR responsivity of small side chain –NCS in two unexplored unnatural amino acids, isothiocyanyl alanine (NCSAla = Ita) and lysine (NCSLys = Itl), without perturbing the conformation is demonstrated in two designed short tripeptide (BocAla-NCSAla-Ala-OMe) and hexapeptide (BocLeu-Val-Phe-Phe-NCSLys-Gly-OMe). Demonstration of site specific fluorescent labeling in both the peptides and ligation type reaction in NCSLys indicates the novelty of these two amino acids as alternative to the available canonical amino acids.  相似文献   

12.
Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling‐based quantitative targeted glycomics (i‐QTaG) technique for the comparative and quantitative analysis of total N‐glycans using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N‐glycans using a model glycoprotein (bovine fetuin). Moreover, the i‐QTaG using MALDI‐TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of 13C6/12C6‐2‐aminobenzoic acid‐labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N‐glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N‐glycan peaks from i‐QTaG method showed a good linearity (R2 > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2‐AA labeled N‐glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up‐regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof‐of‐concept study, we demonstrated that the i‐QTaG method, which enables to achieve a reliable comparative quantitation of total N‐glycans via MALDI‐TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:840–848, 2015  相似文献   

13.
Simple protein separation by 1DE is a widely used method to reduce sample complexity and to prepare proteins for mass spectrometric identification via in‐gel digestion. While several automated solutions are available for in‐gel digestion particularly of small cylindric gel plugs derived from 2D gels, the processing of larger 1D gel‐derived gel bands with liquid handling work stations is less well established in the field. Here, we introduce a digestion device tailored to this purpose and validate its performance in comparison to manual in‐gel digestion. For relative quantification purposes, we extend the in‐gel digestion procedure by iTRAQ labeling of the tryptic peptides and show that automation of the entire workflow results in robust quantification of proteins from samples of different complexity and dynamic range. We conclude that automation improves accuracy and reproducibility of our iTRAQ workflow as it minimizes the variability in both, digestion and labeling efficiency, the two major causes of irreproducible results in chemical labeling approaches.  相似文献   

14.
The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg2+) that are orthogonal to the acidic milieu used for global deprotection in Fmoc‐based solid‐phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)‐containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on‐resin Acm to Scm conversion that allows the preparation of Cys(Scm)‐containing peptides under conditions that do not modify other amino acids. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
To develop a concise proteomic procedure to verify the protein disulfide bond arrangement, non‐reductive trypsin digestion of neuregulin 1‐β1 (176–246), a model disulfide‐containing protein, was assessed by a proteolytic 18O‐labeling analysis. As a result, the commonly used in‐gel tryptic digestion method has been improved for use entirely under neutral pH conditions. With this procedure, the disulfide arrangement of proteins could represent a clinical index candidate in pathological proteomic studies.  相似文献   

16.
Incorporation of ferrocenyl group to peptides is an efficient method to alter their hydrophobicity. Ferrocenyl group can also act as an electrochemical probe when incorporated onto functional peptides. Most often, ferrocene is incorporated onto peptides post‐synthesis via amide, ester or triazole linkages. Stable amino acids containing ferrocene as a C‐linked side chain are potentially useful building units for the synthesis of ferrocene‐containing peptides. We report here an efficient route to synthesize ferrocene‐containing amino acids that are stable and can be used in peptide synthesis. Coupling of 2‐ferrocenyl‐1,3‐dithiane and iodides derived from aspartic acid or glutamic acid using n‐butyllithium leads to the incorporation of a ferrocenyl unit to the δ‐position or ε‐position of an α‐amino acid. The reduction or hydrolysis of the dithiane group yields an alkyl or an oxo derivative. The usability of the synthesized amino acids is demonstrated by incorporating one of the amino acids in both C‐terminus and N‐terminus of tripeptides in solution phase. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

18.
Relaxin family peptides have important biological functions, and so far, four G‐protein‐coupled receptors have been identified as their receptors (RXFP1–4). A chimeric relaxin family peptide R3/I5, containing the B‐chain of relaxin‐3 and the A‐chain of INSL5, is a selective agonist for both RXFP3 and RXFP4. In a previous study, europium‐labeled R3/I5, as a nonradioactive and low‐background receptor‐binding tracer, was prepared through a chemical synthesis approach. In the present study, we established a convenient alternative approach for preparing the europium‐labeled R3/I5 tracer based on a recombinant R3/I5 designed to carry a solubilizing tag at the A‐chain N‐terminus and a pyroglutamate residue at the B‐chain N‐terminus. Because of the presence of a single primary amine moiety, the recombinant R3/I5 peptide was site‐specifically mono‐labeled at the A‐chain N‐terminus by a diethylenetriaminepentaacetic acid/europium moiety through a convenient one‐step procedure. The diethylenetriaminepentaacetic acid/Eu3+‐labeled R3/I5 bound both receptors RXFP3 and RXFP4 with high binding affinities and low nonspecific binding. Thus, we have presented a valuable nonradioactive tracer for future interaction studies on RXFP3 and RXFP4 with various natural or designed ligands. The present approach could also be adapted for preparing and labeling of other chimeric relaxin family peptides. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The production of bioactive peptides and small protein fragments is commonly achieved via solid-phase chemical synthesis. However, such techniques become unviable and prohibitively expensive when the peptides are large (e.g., >30 amino acids) or when isotope labeling is required for NMR studies. Expression and purification of large quantities of unfolded peptides in E. coli have also proved to be difficult even when the desired peptides are carried by fusion proteins such as GST. We have developed a peptide expression system that utilizes a novel fusion protein (SFC120) which is highly expressed and directs the peptides to inclusion bodies, thereby minimizing in-cell proteolysis whilst maintaining high yields of peptide expression. The expressed peptides can be liberated from the carrier protein by CNBr cleavage at engineered methionine sites or through proteolysis by specific proteases for peptides containing methionine residues. In the present systems, we use CNBr, due to the absence of methionine residues in the target peptides, although other cleavage sites can be easily inserted. We report the production of six unfolded protein fragments of different composition and lengths (19 to 48 residues) derived from the virulent effector kinases, Cla4 and Ste20 of Candida albicans. All six peptides were produced with high yields of purified material (30–40 mg/l in LB, 15–20 mg/l in M9 medium), pointing to the general applicability of this expression system for peptide production. The enrichment of these peptides with 15N, 15N/13C and even 15N/13C/2H isotopes is presented allowing speedy assignment of poorly-resolved resonances of flexible peptides.  相似文献   

20.
13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady‐state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady‐state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable ‘single‐sample’ spatially and temporally resolved steady‐state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC–MS measurement‐based approach. Deconvolution of PMDs of the storage protein β–conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC–MS‐derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号