首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients   总被引:2,自引:0,他引:2  
Autoantibodies to the 65-kDa isoform of glutamate decarboxylase GAD65 (GAD65Ab) are strong candidates for a pathological role in Stiff-Person syndrome (SPS). We have analyzed the binding specificity of the GAD65Ab in serum and cerebrospinal fluid (CSF) of 12 patients with SPS by competitive displacement studies with GAD65-specific rFab-derived from a number of human and mouse mAbs specific for different determinants on the Ag. We demonstrate considerable differences in the epitope specificity when comparing paired serum and CSF samples, suggesting local stimulation of B cells in the CSF compartment of these patients. Moreover, these autoantibodies strongly inhibit the enzymatic activity of GAD65, thus blocking the formation of the neurotransmitter gamma-aminobutyric acid. The capacity of the sera to inhibit the enzymatic activity of GAD65 correlated with their binding to a conformational C-terminal Ab epitope. Investigation of the inhibitory mechanism revealed that the inhibition could not be overcome by high concentrations of glutamate or the cofactor pyridoxal phosphate, suggesting a noncompetitive inhibitory mechanism. Finally, we identified a linear epitope on amino acids residues 4-22 of GAD65 that was recognized solely by autoantibodies from patients with SPS but not by serum from type 1 diabetes patients. A mAb (N-GAD65 mAb) recognizing this N-terminal epitope was successfully humanized to enhance its potential therapeutic value by reducing its overall immunogenicity.  相似文献   

2.

Background

Autoantibodies to GAD65 (anti-GAD65) are present in the sera of 70–80% of patients with type 1 diabetes (T1D), but antibodies to the structurally similar 67 kDa isoform GAD67 are rare. Antibodies to GAD67 may represent a cross-reactive population of anti-GAD65, but this has not been formally tested.

Methodology/Principal Findings

In this study we examined the frequency, levels and affinity of anti-GAD67 in diabetes sera that contained anti-GAD65, and compared the specificity of GAD65 and GAD67 reactivity. Anti-GAD65 and anti-GAD67 were measured by radioimmunoprecipitation (RIP) using 125I labeled recombinant GAD65 and GAD67. For each antibody population, the specificity of the binding was measured by incubation with 100-fold excess of unlabeled GAD in homologous and heterologous inhibition assays, and the affinity of binding with GAD65 and GAD67 was measured in selected sera. Sera were also tested for reactivity to GAD65 and GAD67 by immunoblotting. Of the 85 sera that contained antibodies to GAD65, 28 contained anti–GAD67 measured by RIP. Inhibition with unlabeled GAD65 substantially or completely reduced antibody reactivity with both 125I GAD65 and with 125I GAD67. In contrast, unlabeled GAD67 reduced autoantibody reactivity with 125I GAD67 but not with 125I GAD65. Both populations of antibodies were of high affinity (>1010 l/mol).

Conclusions

Our findings show that autoantibodies to GAD67 represent a minor population of anti-GAD65 that are reactive with a cross-reactive epitope found also on GAD67. Experimental results confirm that GAD65 is the major autoantigen in T1D, and that GAD67 per se has very low immunogenicity. We discuss our findings in light of the known similarities between the structures of the GAD isoforms, in particular the location of a minor cross-reactive epitope that could be induced by epitope spreading.  相似文献   

3.
A cDNA expression strategy was used to localize amino acid sequences which were specific for fast, as opposed to slow, isoforms of the chicken skeletal muscle myosin heavy chain (MHC) and which were conserved in vertebrate evolution. Five monoclonal antibodies (mAbs), termed F18, F27, F30, F47, and F59, were prepared that reacted with all of the known chicken fast MHC isoforms but did not react with any of the known chicken slow nor with smooth muscle MHC isoforms. The epitopes recognized by mAbs F18, F30, F47, and F59 were on the globular head fragment of the MHC, whereas the epitope recognized by mAb F27 was on the helical tail or rod fragment. Reactivity of all five mAbs also was confined to fast MHCs in the rat, with the exception of mAb F59, which also reacted with the beta-cardiac MHC, the single slow MHC isoform common to both the rat heart and skeletal muscle. None of the five epitopes was expressed on amphioxus, nematode, or Dictyostelium MHC. The F27 and F59 epitopes were found on shark, electric ray, goldfish, newt, frog, turtle, chicken, quail, rabbit, and rat MHCs. The epitopes recognized by these mAbs were conserved, therefore, to varying degrees through vertebrate evolution and differed in sequence from homologous regions of a number of invertebrate MHCs and myosin-like proteins. The sequence of those epitopes on the head were mapped using a two-part cDNA expression strategy. First, Bal31 exonuclease digestion was used to rapidly generate fragments of a chicken embryonic fast MHC cDNA that were progressively deleted from the 3' end. These cDNA fragments were expressed as beta-galactosidase/MHC fusion proteins using the pUR290 vector; the fusion proteins were tested by immunoblotting for reactivity with the mAbs; and the approximate locations of the epitopes were determined from the sizes of the cDNA fragments that encoded a particular epitope. The epitopes were then precisely mapped by expression of overlapping cDNA fragments of known sequence that covered the approximate location of the epitopes. With this method, the epitope recognized by mAb F59 was mapped to amino acids 211-231 of the chicken embryonic fast MHC and the three distinct epitopes recognized by mAbs F18, F30, and F47 were mapped to amino acids approximately 65-92. Each of these epitope sequences is at or near the ATPase active site.  相似文献   

4.
Infection of humans with HIV‐1 has previously been independently shown to result in the generation of autoantibodies (AAbs) reactive with immunoglobulin Fab fragments (Heidelberg), and with autoantibodies to T‐cell receptors (TCRs) (Tucson). Here, we carry out epitope mapping studies of affinity‐purified AAbs to Fab fragments prepared from individual HIV‐positive patients for their capacity to bind recombinant constructs and peptide‐defined epitopes modeling TCR and Ig light chains. Some affinity‐purified autoantibodies reacted strongly with TCRs expressed by intact T‐cells, and recombinant Vα/Vβ constructs as well as with certain synthetic peptide epitopes. The binding reactions of affinity‐purified AAbs of individual patients were distinct, and the AAb preparations consisted of populations of polyclonal lgs as reflected in specificity and isotype. AAb pools from individual patients all bound particular regions of TCR and Ig chains defined by comprehensive peptide synthesis including the CDR1 and Fr3 segments of the variable domains and the joining segment/switch peptide. In addition, other reactivities to restricted regions of α, β and λ light chains were documented. These results substantiate the cross‐reactivity of TCR and Ig–Fab determinants, and are consistent with the hypothesis that autoantibodies arising as a consequence of HIV infection can have an immunomodulatory role. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Apolipoprotein D (apoD), a 169 amino acid member of the lipocalin family, is thought to be a transporter of small, hydrophobic ligands. A panel of 10 anti-apoD monoclonal antibodies (mAbs) was prepared and characterized in order to define apoD structure-function relationships. An apoD epitope map was constructed based on reactivity of the mAbs with apoD fragments. Three mAbs react with epitopes between apoD residues 7-78, seven mAbs with epitopes between residues 128-169, one mAb recognizes an epitope that straddles residues 99-102 and one mAb is specific for an epitope composed of non-contiguous apoD residues. Several pairs of mAbs whose respective epitopes are widely separated in apoD primary structure can compete for binding to immobilized apoD. This would be consistent with the compact beta-barrel tertiary structure that apoD is thought to adopt. None of the mAbs block the interaction of apoD with pregnenolone, a putative physiological ligand for apoD.  相似文献   

6.
The Ku (p70/p80) autoantigen is a DNA-protein complex recognized by sera from certain patients with SLE and related diseases. Although human autoantibodies react with at least eight different epitopes of the human Ku complex, they had little reactivity with rodent Ku Ag on immunoblots. Small amounts of 70- and 80-kDa proteins were immunoprecipitated from murine cell extracts, however, suggesting that the Ku particle is not unique to human cells. This was confirmed by isolating cDNA clones encoding murine Ku Ag by plaque hybridization with a human p70 cDNA probe. The murine p70 cDNA clones had a deduced amino acid sequence 82.9% identical to that of human p70, and comparable amounts of murine and human p70 mRNA were detected in 3T3 and K562 cells, respectively. The poor reactivity of human autoantibodies with murine p70 was attributable to specific amino acid substitutions in an immunodominant conformational epitope located on amino acids 560-609 of human p70. Several amino acids critical for antigenicity of this region were defined by mutagenesis studies. Other conformational epitopes of Ku were also antigenically poorly conserved among species. Species-specific epitopes recognized by lupus autoantibodies are unusual but not unique to Ku. In general, poorly conserved autoepitopes have been conformational, rather than sequential, suggesting that the antigenicity of conformational epitopes may be particularly sensitive to evolutionary change.  相似文献   

7.
In current work, we used recombinant OspC protein derived from B. afzelii strain BRZ31 in the native homodimeric fold for mice immunization and following selection process to produce three mouse monoclonal antibodies able to bind to variable parts of up to five different OspC proteins. Applying the combination of mass spectrometry assisted epitope mapping and affinity based theoretical prediction we have localized regions responsible for antigen‐antibody interactions and approximate epitopes' amino acid composition. Two mAbs (3F4 and 2A9) binds to linear epitopes located in previously described immunogenic regions in the exposed part of OspC protein. The third mAb (2D1) recognises highly conserved discontinuous epitope close to the ligand binding domain 1.  相似文献   

8.
The smaller isoform of the GABA-synthesizing enzyme, glutamic acid decarboxylase 65 (GAD65), is unusually susceptible to becoming a target of autoimmunity affecting its major sites of expression, GABA-ergic neurons and pancreatic beta-cells. In contrast, a highly homologous isoform, GAD67, is not an autoantigen. We used homolog-scanning mutagenesis to identify GAD65-specific amino acid residues which form autoreactive B-cell epitopes in this molecule. Detailed mapping of 13 conformational epitopes, recognized by human monoclonal antibodies derived from patients, together with two and three-dimensional structure prediction led to a model of the GAD65 dimer. GAD65 has structural similarities to ornithine decarboxylase in the pyridoxal-5'-phosphate-binding middle domain (residues 201-460) and to dialkylglycine decarboxylase in the C-terminal domain (residues 461-585). Six distinct conformational and one linear epitopes cluster on the hydrophilic face of three amphipathic alpha-helices in exons 14-16 in the C-terminal domain. Two of those epitopes also require amino acids in exon 4 in the N-terminal domain. Two distinct epitopes reside entirely in the N-terminal domain. In the middle domain, four distinct conformational epitopes cluster on a charged patch formed by amino acids from three alpha-helices away from the active site, and a fifth epitope resides at the back of the pyridoxal 5'-phosphate binding site and involves amino acid residues in exons 6 and 11-12. The epitopes localize to multiple hydrophilic patches, several of which also harbor DR*0401-restricted T-cell epitopes, and cover most of the surface of the protein. The results reveal a remarkable spectrum of human autoreactivity to GAD65, targeting almost the entire surface, and suggest that native folded GAD65 is the immunogen for autoreactive B-cells.  相似文献   

9.
BACKGROUND AND AIMS: Glutamic acid decarboxylase (GAD, EC 4.1.1.15) catalyses the conversion of glutamate to gamma-aminobutyric acid (GABA). The 65 kDa isoform, GAD65 is a potent autoantigen in type 1 diabetes, whereas GAD67 is not. A hybrid cDNA was created by fusing a human cDNA for amino acids 1-101 of GAD67 to a human cDNA for amino acids 96-585 of GAD65; the recombinant (r) protein was expressed in yeast and was shown to have equivalent immunoreactivity to mammalian brain GAD with diabetes sera. We here report on enzymatic and molecular properties of rGAD67/65. METHODS: Studies were performed on enzymatic activity of rGAD67/65 by production of 3H-GABA from 3H-glutamate, enzyme kinetics, binding to the enzyme cofactor pyridoxal phosphate (PLP), stability according to differences in pH, temperature and duration of storage, and antigenic reactivity with various GAD-specific antisera. RESULTS: The properties of rGAD67/65 were compared with published data for mammalian brain GAD (brackets). These included a specific enzyme activity of 22.7 (16.7) nKat, optimal pH for enzymatic activity 7.4 (6.8), K(m) of 1.3 (1.3) mM, efficient non-covalent binding to the cofactor PLP, and high autoantigenic potency. The stability of rGAD67/65 was optimal over 3 months at -80 degrees C, or in lyophilized form at -20 degrees C. CONCLUSIONS: Hybrid rGAD67/65 has enzymatic and other properties similar to those of the mixed isoforms of GAD in preparations from mammalian brain as described elsewhere, in addition to its previously described similar immunoreactivity.  相似文献   

10.
Recent clinical trials to develop anti‐methicillin‐resistant Staphylococcus aureus (MRSA) therapeutic antibodies have met unsuccessful sequels. To develop more effective antibodies against MRSA infection, a panel of mAbs against S. aureus cell wall was generated and then screened for the most protective mAb in mouse infection models. Twenty‐two anti‐S. aureus IgG mAbs were obtained from mice that had been immunized with alkali‐processed, deacetylated cell walls of S. aureus. One of these mAbs, ZBIA5H, exhibited life‐saving effects in mouse models of sepsis caused by community‐acquired MRSA strain MW2 and vancomycin‐resistant S. aureus strain VRS1. It also had a curative effect in a MW2‐caused pneumonia model. Curiously, the target of ZBIA5H was considered to be a conformational epitope of either the 1,4‐β‐linkage between N‐acetylmuramic acid and N‐acetyl‐D‐glucosamine or the peptidoglycan per se. Reactivity of ZBIA5H to S. aureus whole cells or purified peptidoglycan was weaker than that of most of the other mAbs generated in this study. However, the latter mAbs did not have the protective activities against S. aureus that ZBIA5H did. These data indicate that the epitopes that trigger production of high‐yield and/or high‐affinity antibodies may not be the most suitable epitopes for developing anti‐infective antibodies. ZBIA5H or its humanized form may find a future clinical application, and its target epitope may be used for the production of vaccines against S. aureus infection.  相似文献   

11.
Pneumococcal surface protein A (PspA) is an antigenic variable vaccine candidate of Streptococcus pneumoniae. Epitope similarities between PspA from the American vaccine candidate strain Rx1 and Norwegian clinical isolates were studied using PspA specific monoclonal antibodies (mAbs) made against clinical Norwegian strains. Using recombinant PspA/Rx1 fragments and immunoblotting the epitopes for mAbs were mapped to two regions of amino acids, 1-67 and 67-236. The discovered epitopes were visualized by modelling of the PspA:Fab part of mAb in three dimensions. Flow cytometric analysis showed that the epitopes for majority of mAbs were accessible for antibody binding on live pneumococci. Also, the epitopes for majority of the mAbs are widely expressed among clinical Norwegian isolates.  相似文献   

12.
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing the PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive with MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.  相似文献   

13.
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids.  相似文献   

14.
Pan  Qing  Wang  Jing  Gao  Yulong  Cui  Hongyu  Liu  Changjun  Qi  Xiaole  Zhang  Yanping  Wang  Yongqiang  Wang  Xiaomei 《Applied microbiology and biotechnology》2018,102(21):9243-9253

The diseases associated with fowl adenovirus (FAdV) infection, such as inclusion body hepatitis (IBH), hepatitis-hydropericardium syndrome (HPS), and gizzard erosion (GE), were first reported in Pakistan in 1987, and subsequent outbreaks have been reported worldwide, especially in China, where severe outbreaks of HPS with high mortality from 30 to 100% were recently reported and resulted in significant economic losses to the poultry industry. The diagnosis methods of FAdVs were mostly limited to the nucleotide sequence of hexon by PCR and DNA sequencing. The aim of this study was to generate B cell epitope maps of the species- and serotype-specific hexon L1 using monoclonal antibodies (mAbs) and bioinformatics tools for the development of novel diagnostic methods. In this study, the hexon L1 (230 amino acids) was expressed and used to generate 10 mAb-expressing hybridoma cell lines against the relative protein peptide. Subsequently, we defined the linear peptide epitopes recognized by these mAbs using a series of partially overlapping peptides derived from the FAdV-C hexon protein amino acid sequence to map mAbs reactivity. Finally, a common B cell epitope (31PLAPKESMFN40) for all species FAdVs and two FAdV-C-specific epitopes (79KISGVFPNP87 and 181DYDDYNIGTT190) were identified. These mAbs and their defined epitopes may support the development of the universal or species-specific differential diagnostic methods of FAdVs.

  相似文献   

15.
Comparison of the inferred amino acid sequence of outer-membrane protein PIB from gonococcal strain P9 with those from other serovars reveals that sequence variations occur in two discrete regions of the molecule centred on residues 196 (Var1) and 237 (Var2). A series of peptides spanning the amino acid sequence of the protein were synthesized on solid-phase supports and reacted with a panel of monoclonal antibodies (mAbs) which recognize either type-specific or conserved antigenic determinants on PIB. Four type-specific mAbs reacted with overlapping peptides in Var1 between residues 192-198. Analysis of the effect of amino acid substitutions revealed that the mAb specificity is generated by differences in the effect of single amino acid changes on mAb binding, so that antigenic differences between strains are revealed by different patterns of reactivity within a panel of antibodies. The variable epitopes in Var1 recognized by the type-specific mAbs lie in a hydrophilic region of the protein exposed on the gonococcal surface, and are accessible to complement-mediated bactericidal lysis. In contrast, the epitope recognized by mAb SM198 is highly conserved but is not exposed in the native protein and the antibody is non-bactericidal. However, the conserved epitope recognized by mAb SM24 is centred on residues 198-199, close to Var1 , and is exposed for bactericidal killing.  相似文献   

16.
We describe a peptide-based strategy for hepatitis C virus (HCV) vaccine design that exploits synthetic peptides representing antibody epitopes of the hypervariable region 1 (HVR1) of the E2 glycoprotein and also less variable regions immediately downstream of HVR1. These epitopes were linked to a T-helper (T(h)) epitope (KLIPNASLIENCTKAEL) derived from the Morbillivirus canine distemper virus. Antibody titres induced by the two vaccine candidates T(h)-A (E2 amino acid 384-414) and T(h)-B (E2 amino acid 390-414) were significantly higher than those produced against vaccines lacking the T(h) epitope (P<0.05). Mice inoculated with the vaccine candidates T(h)-C (E2 amino acids 412-423) and T(h)-F (E2 amino acids 436-447) emulsified in complete Freund's adjuvant each elicited antibody titres that were significantly higher than those elicited by T(h)-E (E2 amino acids 396-407) and T(h)-D (E2 amino acids 432-443) (P<0.01). Antisera obtained from mice inoculated with the epitope vaccines T(h)-A, T(h)-B, T(h)-D and T(h)-E bound to E2 expressed at the surface of 293T cells that had been transfected with E1E2. Furthermore, IgG from the sera of mice inoculated with four of the vaccine candidates, T(h)-A, T(h)-C, T(h)-D and T(h)-E, inhibited the entry of HCV/human immunodeficiency virus pseudoparticles (HCVpps) into Huh-7 cells. These results demonstrate the potential of synthetic peptide-based constructs in the delivery of potential neutralizing epitopes that are present within the viral envelope of HCV.  相似文献   

17.
Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non‐collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen‐specific B‐ and T cell‐targeted therapies in EBA.  相似文献   

18.
MICA antigens are polymorphic glycoproteins expressed on the surface of human endothelial cells and other cells. Antibodies against MICA have been found in transplant recipients and were found to be associated with decreased survival of kidney allografts. In the present work, we investigated the polymorphisms that are recognized by antibodies against MICA. Soluble MICA recombinant proteins representing 11 common alleles, two hybrid alleles, and two single amino acid mutated alleles were produced. Patterns of reactivity were determined with MICA bound to Luminex beads. In some studies, sera containing antibodies against MICA were absorbed by cell lines transfected with MICA*001, MICA*002, MICA*008, and MICA*009 or with untransfected cells, followed by testing of antibody reactivity against MICA proteins bound to beads. The monoclonal antibodies and sera used in this study were found to recognize up to 14 distinct MICA epitopes as demonstrated by their differential absorption/reactivity patterns. Among these, nine epitopes correlated with a single unique amino acid: one shared two signature amino acids, one shared three signature amino acids in close proximity, and three epitopes involved multiple amino acids in a nonlinear sequence. Two groups of public epitopes (MICA-G1 and MICA-G2) were characterized. MICA shared epitopes were determined by reactivity loss in single MICA antigen bead assays by absorption with MICA transfectants. Since these epitopes may be targets for antibody binding and possibly antibody-mediated allograft rejection, epitope identification may help understand the development of MICA antibodies and to identify suitable donors for sensitized transplant recipients.  相似文献   

19.
BACKGROUND: Insulin (1) and glutamic acid decarboxylase (GAD) (2) are both autoantigens in insulin-dependent diabetes mellitus (IDDM), but no molecular mechanism has been proposed for their association. We have identified a 13 amino acid peptide of proinsulin (amino acids 24-36) that bears marked similarity to a peptide of GAD65 (amino acids 506-518) (G. Rudy, unpublished). In order to test the hypothesis that this region of similarity is implicated in the pathogenesis of IDDM, we assayed T cell reactivity to these two peptides in subjects at risk for IDDM. MATERIALS AND METHODS: Subjects at risk for IDDM were islet cell antibody (ICA)-positive, first degree relatives of people with insulin-dependent diabetes. Peripheral blood mononuclear cells from 10 pairs of at-risk and HLA-DR matched control subjects were tested in an in vitro proliferation assay. RESULTS: Reactivity to both proinsulin and GAD peptides was significantly greater among at-risk subjects than controls (proinsulin; p < 0.008; GAD; p < 0.018). In contrast to reactivity to the GAD peptide, reactivity to the proinsulin peptide was almost entirely confined to the at-risk subjects. CONCLUSIONS: This is the first demonstration of T cell reactivity to a proinsulin-specific peptide. In addition, it is the first example of reactivity to a minimal peptide region shared between two human autoimmune disease-associated self antigens. Mimicry between these similar peptides may provide a molecular basis for the conjoint autoantigenicity of proinsulin and GAD in IDDM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号