首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
2.
Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding‐induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond‐containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild‐type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding‐induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide‐stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra‐cytosolic compartment, like the periplasm.  相似文献   

3.
Sugars, which function as osmolytes within cells, retard the amyloid fibril formation of the amyloidosis peptides and proteins. To examine the mechanism of this retardation in detail, we analyzed the effect of sugars (trehalose, sucrose, and glucose) on the polypeptide chains in 3Hmut Wil, which is formed by the mutation of three His residues in Wil mutant as a cause of amyloid light‐chain (AL) amyloidosis, at pH 2, a pH condition under which 3Hmut Wil was almost denatured. Sugars caused the folding of 3Hmut Wil so that its polypeptide chains adopted a native‐like rather than a denatured conformation, as suggested by tryptophan fluorescence, CD spectroscopy, and heteronuclear NMR. Furthermore, these sugars promoted the folding to a native‐like conformation according to the effect of preferential hydration rather than direct interaction. However, the type of sugar had no effect on the elongation of amyloid fibrils. Therefore, it was concluded that sugar affected the thermodynamic stability of 3Hmut Wil but not the elongation of amyloid fibrils.  相似文献   

4.
Chaperonin 60 is the prototypic molecular chaperone, an essential protein in eukaryotes and prokaryotes, whose sequence conservation provides an excellent basis for phylogenetic analysis. Escherichia coli chaperonin 60 (GroEL), the prototype of this family of proteins, has an established oligomeric‐structure‐based folding mechanism and a defined population of folding partners. However, there is a growing number of examples of chaperonin 60 proteins whose crystal structures and oligomeric composition are at variance with GroEL, suggesting that additional complexities in the protein‐folding function of this protein should be expected. In addition, many organisms have multiple chaperonin 60 proteins, some of which have lost their protein‐folding ability. It is emerging that this highly conserved protein has evolved a bewildering variety of additional biological functions – known as moonlighting functions – both within the cell and in the extracellular milieu. Indeed, in some organisms, it is these moonlighting functions that have been left after the loss of the protein‐folding activity. This highlights the major paradox in the biology of chaperonin 60. This article reviews the relationship between the folding and non‐folding (moonlighting) activities of the chaperonin 60 family and discusses current knowledge on their molecular evolution focusing on protein domains involved in the non‐folding chaperonin functions in an attempt to understand the emerging biology of this evolutionarily ancient protein family.  相似文献   

5.
The ester carbonyl stretching vibration has recently been shown to be a sensitive and convenient infrared (IR) probe of protein electrostatics due to the linear dependence of its frequency on local electric field. While an ester moiety can be easily incorporated into peptides via solid‐phase synthesis, currently there is no method available to site‐specifically incorporate it into a large protein. Herein, we show that it is possible to use a cysteine alkylation reaction to achieve this goal and demonstrate the feasibility of this simple method by successfully incorporating a methyl ester group (? CH2COOCH3) into a model peptide (YGGCGG), two amyloid‐forming peptides derived from the insulin B chain and Aβ, and bovine serum albumin (BSA). IR results obtained with those peptide and protein systems further confirm the utility of this vibrational probe in monitoring, for example, the structural integrity of amyloid fibrils and ligand binding‐induced changes in protein local hydration status.  相似文献   

6.
EFhd2 is a conserved calcium‐binding protein, abundant within the central nervous system. Previous studies identified EFhd2 associated with pathological forms of tau proteins in the tauopathy mouse model JNPL3, which expresses the human tauP301L mutant. This association was validated in human tauopathies, such as Alzheimer's disease (AD). However, the role that EFhd2 may play in tauopathies is still unknown. Here, we show that EFhd2 formed amyloid structures in vitro, a capability that is reduced by calcium ions. Electron microscopy (EM) analyses demonstrated that recombinant EFhd2 formed filamentous structures. EM analyses of sarkosyl‐insoluble fractions derived from human AD brains also indicated that EFhd2 co‐localizes with aggregated tau proteins and formed granular structures. Immunohistological analyses of brain slices demonstrated that EFhd2 co‐localizes with pathological tau proteins in AD brains, confirming the co‐aggregation of EFhd2 and pathological tau. Furthermore, EFhd2's coiled‐coil domain mediated its self‐oligomerization in vitro and its association with tau proteins in JNPL3 mouse brain extracts. The results demonstrate that EFhd2 is a novel amyloid protein associated with pathological tau proteins in AD brain and that calcium binding may regulate the formation of EFhd2's amyloid structures. Hence, EFhd2 may play an important role in the pathobiology of tau‐mediated neurodegeneration.  相似文献   

7.
Auton M  Bolen DW  Rösgen J 《Proteins》2008,73(4):802-813
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.  相似文献   

8.
The amyloid cascade model hypothesizes that neurotoxic oligomers or aggregates formed by the Alzheimer amyloid peptide (Aβ) cause disease pathology in Alzheimer's disease. Attempted treatment strategies for Alzheimer's disease have involved either inhibiting Aβ oligomerization or aggregation, or dissolving existing aggregates. Blocking such downhill processes, however, has proved daunting. We have used a different approach that targets Aβ before the oligomerization cascade begins. We predicted that an amphipathic helix could convert Aβ into a native-like protein and inhibit initiation of oligomerization and aggregation. This idea was tested with a designed library and genetic screen. We exhaustively screened a library of semi-randomized amphipathic helical sequences, each expressed as a fusion protein with an Aβ42-yellow fluorescent protein sequence serving as a reporter for folding and solubilization. This yielded an amphipathic helix capable of initiating native-like folding in Aβ42 and preventing aggregation. This amphipathic helix has direct application to Alzheimer's disease therapy development.  相似文献   

9.
An array of genetic screens and selections has been developed for reporting protein folding and solubility in the cytoplasm of living cells. However, there are currently no analogous folding assays for the bacterial periplasm, despite the significance of this compartment for the expression of recombinant proteins, especially those requiring important posttranslational modifications (e.g., disulfide bond formation). Here, we describe an engineered genetic selection for monitoring protein folding in the periplasmic compartment of Escherichia coli cells. In this approach, target proteins are sandwiched between an N‐terminal signal recognition particle (SRP)‐dependent signal peptide and a C‐terminal selectable marker, TEM‐1 β‐lactamase. The resulting chimeras are localized to the periplasmic space via the cotranslational SRP pathway. Using a panel of native and heterologous proteins, we demonstrate that the folding efficiency of various target proteins correlates directly with in vivo β‐lactamase activity and thus resistance to ampicillin. We also show that this reporter is useful for the discovery of extrinsic periplasmic factors (e.g., chaperones) that affect protein folding and for obtaining folding‐enhanced proteins via directed evolution. Collectively, these data demonstrate that our periplasmic folding reporter is a powerful tool for screening and engineering protein folding in a manner that does not require any structural or functional information about the target protein.  相似文献   

10.
The huntingtin protein is characterized by a segment of consecutive glutamines (QN) that is responsible for its fibrillation. As with other amyloid proteins, misfolding of huntingtin is related to Huntington's disease through pathways that can involve interactions with phospholipid membranes. Experimental results suggest that the N‐terminal 17‐amino‐acid sequence (httNT) positioned just before the QN region is important for the binding of huntingtin to membranes. Through all‐atom explicit solvent molecular dynamics simulations, we unveil the structure and dynamics of the httNTQN fragment on a phospholipid membrane at the atomic level. We observe that the insertion dynamics of this peptide can be described by four main steps—approach, reorganization, anchoring, and insertion—that are very diverse at the atomic level. On the membrane, the httNT peptide forms a stable α‐helix essentially parallel to the membrane with its nonpolar side‐chains—mainly Leu‐4, Leu‐7, Phe‐11 and Leu‐14—positioned in the hydrophobic core of the membrane. Salt‐bridges involving Glu‐5, Glu‐12, Lys‐6, and Lys‐15, as well as hydrogen bonds involving Thr‐3 and Ser‐13 with the phospholipids also stabilize the structure and orientation of the httNT peptide. These observations do not significantly change upon adding the QN region whose role is rather to provide, through its hydrogen bonds with the phospholipids' head group, a stable scaffold facilitating the partitioning of the httNT region in the membrane. Moreover, by staying accessible to the solvent, the amyloidogenic QN region could also play a key role for the oligomerization of httNTQN on phospholipid membranes. Proteins 2014; 82:1409–1427. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

12.
Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed.  相似文献   

13.
14.
The lipopolysaccharide (LPS)‐rich outer membrane (OM) is a unique feature of Gram‐negative bacteria, and LPS transport across the inner membrane (IM) and through the periplasm is essential to the biogenesis and maintenance of the OM. LPS is transported across the periplasm to the outer leaflet of the OM by the LPS transport (Lpt) system, which in Escherichia coli is comprised of seven recently identified proteins, including LptA, LptC, LptDE, and LptFGB2. Structures of the periplasmic protein LptA and the soluble portion of the membrane‐associated protein LptC have been solved and show these two proteins to be highly structurally homologous with unique folds. LptA has been shown to form concentration dependent oligomers that stack end‐to‐end. LptA and LptC have been shown to associate in vivo and are expected to form a similar protein–protein interface to that found in the LptA dimer. In these studies, we disrupted LptA oligomerization by introducing two point mutations that removed a lysine and glutamine side chain from the C‐terminal β‐strand of LptA. This loss of oligomerization was characterized using EPR spectroscopy techniques and the affinity of the interaction between the mutant LptA protein and WT LptC was determined using EPR spectroscopy (Kd = 15 µM) and isothermal titration calorimetry (Kd = 14 µM). Kd values were also measured by EPR spectroscopy for the interaction between LptC and WT LptA (4 µM) and for WT LptA oligomerization (29 µM). These data suggest that the affinity between LptA and LptC is stronger than the affinity for LptA oligomerization.  相似文献   

15.
We hypothesize a model of protein folding based on the Poincaré recursion argument and a number of experimental results, including CD, nmr, and Raman spectra. Our model considers that protein folding in vivo proceeds through prefolded peptide segments consisting of 3 to 14 amino acid residues. Such segments may fold spontaneously into nativelike microdomains within a biologically feasible time, i.e., in the 10?6–10?1 s time scale. If, due to improper recognition and adjustment of their surfaces, these transiently formed secondary structures are not stabilized by long-range interactions, then the protein species occur within a time- and number-averaged spectrum of populations of transient conformational substates until the final, proper adjustment of the segments takes place. However, if, during protein folding, incorrect disulfide (S-S) bonds are formed, then such unique through-space contacts between the different parts of the polypeptide chain are usually restricted to a minimum. It is postulated that unfolding and refolding processes in vitro, and protein folding in vivo, proceed through variably populated quantized substates. The distribution of these substates depends on a number of molecular interactions between the phase and the hydration spheres surrounding the prefolded surfaces of peptide segments and long-range interactions between these prefolded surfaces.  相似文献   

16.
Water dynamics clue to key residues in protein folding   总被引:1,自引:0,他引:1  
A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.  相似文献   

17.
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure‐based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well‐separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non‐native contact interactions in different folding scenarios. These findings strongly correlate with the protein free‐energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins.Proteins 2013; 81:1727–1737. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Design of simple protein structures represents the essential first step toward novel macromolecules and understanding the basic principles of protein folding. Our work focuses on the ion channel formation and structure of peptides having a repeated pattern of glycine residues. Investigation of the ion channel properties of a glycine repeat peptide, VSLGLSIGFSVGVSIGWSFGRSRG revealed the formation of porin-like high conductance, multimeric, non-selective voltage-gated channels in phospholipid bilayer membranes. ATR-IR and CD spectroscopic studies showed an anti-parallel beta sheet structure in membranes. The formation of porin-like ion channels by a beta sheet peptide suggests spontaneous assembly into a beta barrel structure through oligomerization as in pore forming bacterial toxins. The present work is the first example of a short synthetic peptide mimicking the pore characteristics of a complex beta barrel protein and demonstrates that smaller peptides are capable of mimicking the complex functional properties of natural ion channels. This will have implications in understanding the folding of beta sheet proteins in membranes, the mechanism of two state voltage gating, and the role of glycine residues in beta barrel proteins.  相似文献   

19.
We study the thermodynamic properties of the experimental fragments of the amyloid fibril made of the HET-s prion proteins (the infectious element of the filamentous fungus Podospora anserina) and of amyloid-β proteins (the major component of Alzheimer's disease-associated plaques) by using the three-dimensional molecular theory of solvation. The full quantitative picture of hydration effects, including the hydration thermodynamics and hydration structure around the fragments, is presented. For both the complexes, the hydration entropic effects dominate, which results in the entropic part offsetting the unfavorable energetic part of the free energy change upon the association. This is in accord with the fact that the hydrophobic cooperativity plays an essential role in the formation of amyloid fibrils. By calculating the partial molar volume of the proteins, we found that the volume change upon the association in both the systems is large and positive, with the implication that high pressure causes destabilization of the fibril. This observation is in good agreement with the recent experimental results. We also found that both the HET-s and amyloid-β pentamers have loose intermolecular packing with voids. The three-dimensional molecular theory of solvation predicts that water molecules can be locked in the interior cavities along the fibril axis for both the HET-s and amyloid-β proteins. We provide a detailed molecular picture of the structural water localized in the interior of the fibrils. Our results suggest that the interior hydration plays an important role in the structural stability of fibrils.  相似文献   

20.
Amyloidosis is a disorder of protein folding in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Over 20 unrelated proteins form amyloid fibrils in vivo, with fibrils sharing a lamellar cross-β sheet structure, composed of non-covalently associated protein or peptide subunits. Amyloidosis may be acquired or hereditary and local or systemic, and is defined according to the precursor protein. Of note, local amyloid deposition occurs in Alzheimer’s disease (AD) and maturity onset diabetes but their precise role in the pathogenesis of these diseases remains uncertain. Glycosaminoglycans (GAG) and the pentraxin protein, serum amyloid P (SAP) component, are universal non-fibrillar constituents of amyloid deposits that contribute to fibrillogenesis. We review potential therapies for amyloidosis, which include measures to reduce the production of amyloidogenic precursor proteins, interference with fibrillogenesis, and enhancement of amyloid clearance, either by active or passive immunisation or by destabilising deposits through removal of serum amyloid P component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号