首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Buczek A  Wałęsa R  Broda MA 《Biopolymers》2012,97(7):518-528
The tendency to adopt β‐turn conformation by model dipeptides with α,β‐dehydrophenylalanine (ΔPhe) residue in the gas phase and in solution is investigated by theoretical methods. We pay special attention to a dependence of conformational properties on the side‐chain configuration of dehydro residue and the influence of N‐methylation on β‐turn stability. An extensive computational study of the conformational preferences of Z and E isomers of dipeptides Ac‐Gly‐(E/Z)‐ΔPhe‐NHMe ( 1a / 1b ) and Ac‐Gly‐(E/Z)‐ΔPhe‐NMe2 ( 2a / 2b ) by B3LYP/6‐311++G(d,p) and MP2/6‐311++G(d,p) methods is reported. It is shown that, in agreement with experimental data, Ac‐Gly‐(Z)‐ΔPhe‐NHMe has a great tendency to adopt β‐turn conformation. In the gas phase the type II β‐turn is preferred, whereas in the polar environment, the type I. On the other hand, dehydro residue in Ac‐Gly‐(E)‐ΔPhe‐NHMe has a preference to adopt extended conformations in all environments. N‐methylation of C‐terminal amide group, which prevents the formation of 1←4 intramolecular hydrogen bond, change dramatically the conformational properties of studied dehydropeptides. Especially, the tendency to adopt β‐turn conformations is much weaker for the N‐methylated Z isomer (Ac‐Gly‐(Z)‐ΔPhe‐NMe2), both in vacuo and in the polar environment. On the contrary, N‐methylated E isomer (Ac‐Gly‐(E)‐ΔPhe‐NMe2) can easier adopt β‐turn conformation, but the backbone torsion angles (?1, ψ1, ?2, ψ2) are off the limits for common β‐turn types. © 2012 Wiley Periodicals, Inc. Biopolymers 97:518–528, 2012.  相似文献   

3.
The continuously growing interest in the understanding of peptide folding led to the conformational investigation of methylamides of N‐acetyl‐amino acids as diamide models. Here we report the results of detailed conformational analysis on Ac‐Pro‐NHMe and Ac‐β‐HPro‐NHMe diamides. These compounds were analyzed by experimental and computational methods, the conformational distributions obtained by Density Functional Theory (DFT) calculations for isolated and solvated diamide compounds are discussed. The conformational preference of proline‐containing diamide compounds as a function of the ambience was observed by a number of chiroptical spectroscopic techniques, such as vibrational circular dichroism (VCD), electronic circular dichroism (ECD), Raman optical activity (ROA) spectroscopy, and additionally by single crystal X‐ray diffraction analyses. Based on a comparison between Ac‐Pro‐NHMe and Ac‐β‐HPro‐NHMe, one can conclude that due to the greater conformational freedom of the β‐HPro derivative, Ac‐β‐HPro‐NHMe shows different behavior in solid‐ and solution‐phase, as well. Ac‐β‐HPro‐NHMe tends to form cis Ac‐β‐HPro amide conformation in water, dichloromethane, and acetonitrile in contrast to its α‐Pro analog. On the other hand, the crystal structure of the β‐HPro compound cannot be related to any of the conformers obtained in vacuum and solution while the X‐ray structure of Ac‐Pro‐NHMe was identified as tαL–, which is a trans Ac‐Pro amide containing conformer also predominant in polar solvents. Chirality 26:228–242, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Dehydrobutyrine is the most naturally occurring dehydroamino acid. It is also the simplest dehydroamino acid having the geometrical isomers E/Z. To investigate its conformational properties, a theoretical analysis was performed on N‐acetyl‐α,β‐dehydrobutyrine N′‐methylamides, Ac‐(E)‐ΔAbu‐NHMe and Ac‐(Z)‐ΔAbu‐NHMe, as well as the dehydrovaline derivative Ac‐ΔVal‐NHMe. The ?, ψ potential energy surfaces and the localised conformers were calculated at the B3LYP/6‐311 + + G(d,p) level of theory both in vacuo and with inclusion of the solvent (chloroform, water) effect (SCRF method). The X‐ray crystal structures of Ac‐(Z)‐ΔAbu‐NHMe and Ac‐ΔVal‐NHMe were determined at 85 and 100 K, respectively. The solid‐state conformational preferences for the studied residues have been analysed and compared with the other related structures. Despite the limitations imposed by the Cα = Cβ double bond on the topography of the side chains, the main chains of the studied dehydroamino acids are more flexible than in standard alanine. The studied dehydroamino acids differ in their conformational preferences, which depend on the polarity of the environment. This might be a reason why the nature quite precisely differentiates between ΔVal and each of the ΔAbu isomers, and why, particularly so with the latter, they are used as a conformational tool to influence the biological action of usually small, cyclic dehydropeptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Electron spin resonance (ESR), 1H‐NMR, voltage and resistance experiments were performed to explore structural and dynamic changes of Egg Yolk Lecithin (EYL) bilayer upon addition of model peptides. Two of them are phenylalanine (Phe) derivatives, Ac‐Phe‐NHMe ( 1 ) and Ac‐Phe‐NMe2 ( 2 ), and the third one, Ac‐(Z)‐ΔPhe‐NMe2 ( 3 ), is a derivative of (Z)‐α,β‐dehydrophenylalanine. The ESR results revealed that all compounds reduced the fluidity of liposome's membrane, and the highest activity was observed for compound 2 with N‐methylated C‐terminal amide bond (Ac‐Phe‐NMe2). This compound, being the most hydrophobic, penetrates easily through biological membranes. This was also observed in voltage and resistance studies. 1H‐NMR studies provided a sound evidence on H‐bond interactions between the studied diamides and lecithin polar head. The most significant changes in H‐atom chemical shifts and spin‐lattice relaxation times T1 were observed for compound 1 . Our experimental studies were supported by theoretical calculations. Complexes EYL? Ac‐Phe‐NMe2 and EYL? Ac‐(Z)‐ΔPhe‐NMe2, stabilized by NH???O or/and CH???O H‐bonds were created and optimized at M06‐2X/6‐31G(d) level of theory in vacuo and in H2O environment. According to our molecular‐modeling studies, the most probable lecithin site of H‐bond interaction with studied diamides is the negatively charged O‐atom in phosphate group which acts as H‐atom acceptor. Moreover, the highest binding energy to hydrocarbon chains were observed in the case of Ac‐Phe‐NMe2 ( 2 ).  相似文献   

6.
Effective peptidomimetics should posses structural rigidity and appropriate interaction pattern leading to potential spatial and electronic matching to the target receptor site. Rational design of such small bioactive molecules could push chemical synthesis and molecular modeling toward faster progress in medicinal chemistry. Conformational properties of N‐t‐butoxycarbonyl‐glycine‐(E/Z)‐dehydrophenylalanine N′,N′‐dimethylamides (Boc‐Gly‐(E/Z)‐ΔPhe‐NMe2) in chloroform were studied by NMR and IR spectroscopy. The experimental findings were supported by extensive calculations at DFT(B3LYP, M06‐2X) and MP2 levels of theory and the β‐turn tendency for both isomers of the studied dipeptide were determined in vacuum and in solution. The theoretical data and experimental IR results were used as an additional information for the NMR‐based determination of the detailed solution conformations of the peptides. The obtained results reveal that N‐methylation of C‐terminal amide group changes dramatically the conformational properties of studied dehydropeptides. Theoretical conformational analysis reveals that the tendency to adopt β‐turn conformations is much weaker for the N‐methylated Z isomer (Boc‐Gly‐(Z)‐ΔPhe‐NMe2), both in vacuum and in polar environment. On the contrary, N‐methylated E isomer (Boc‐Gly‐(E)‐ΔPhe‐NMe2) can easily adopt β‐turn conformation, but the backbone torsion angles (φ1, ψ1, φ2, ψ2) are off the limits for common β‐turn types. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 28–40, 2014.  相似文献   

7.
Conformational preferences and prolyl cis?trans isomerizations of the (2S,4S)‐4‐methylproline (4S‐MePro) and (2S,4R)‐4‐methylproline (4R‐MePro) residues are explored at the M06‐2X/cc‐pVTZ//M06‐2X/6‐31+G(d) level of theory in the gas phase and in water, where solvation free energies were calculated using the implicit SMD model. In the gas phase, the down‐puckered γ‐turn structure with the trans prolyl peptide bond is most preferred for both Ac‐4S‐MePro‐NHMe and Ac‐4R‐MePro‐NHMe, in which the C7 hydrogen bond between two terminal groups seems to play a role, as found for Ac‐Pro‐NHMe. Because of the C7 hydrogen bonds weakened by the favorable direct interactions between the backbone C?O and H? N groups and water molecules, the 4S‐MePro residue has a strong preference of the up‐puckered polyproline II (PPII) structure over the down‐puckered PPII structure in water, whereas the latter somewhat prevails over the former for the 4R‐MePro residue. However, these two structures are nearly equally populated for Ac‐Pro‐NHMe. The calculated populations for the backbone structures of Ac‐4S‐MePro‐NHMe and Ac‐4R‐MePro‐NHMe in water are reasonably consistent with CD and NMR experiments. In particular, our calculated results on the puckering preference of the 4S‐MePro and 4R‐MePro residues with the PPII structures are in accord with the observed results for the stability of the (X‐Y‐Gly)7 triple helix with X = 4R‐MePro or Pro and Y = 4S‐MePro or Pro. The calculated rotational barriers indicate that the cis?trans isomerization may in common proceed through the anticlockwise rotation for Ac‐4S‐MePro‐NHMe, Ac‐4R‐MePro‐NHMe, and Ac‐Pro‐NHMe in water. The lowest rotational barriers become higher by 0.24?1.43 kcal/mol for Ac‐4S‐MePro‐NHMe and Ac‐4R‐MePro‐NHMe than those for Ac‐Pro‐NHMe in water. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 51–61, 2011.  相似文献   

8.
Franca EF  Freitas LC  Lins RD 《Biopolymers》2011,95(7):448-460
Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle‐like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N‐acetyl groups in the particles. The polysaccharide chains of highly N‐deacetylated particles where the N‐acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two‐fold helix and five‐fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two‐fold helix with ? and ψ values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N‐acetyl groups are unevenly distributed. Systems with 60% or higher N‐acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N‐acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3‐HO3(n)···O5(n +1) hydrogen bond, which in turn controls particle aggregation. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 448–460, 2011.  相似文献   

9.
The terminal parts of the influenza hemagglutinin (HA) receptors α2,6‐ and α2,3‐sialyllactoses were conjugated to an artificial carrier, named sequential oligopeptide carrier (SOC4), to formulate human and avian receptor mimics, respectively. SOC4, formed by the tripeptide unit Lys‐Aib‐Gly, adopts a rigid helicoids‐type conformation, which enables the conjugation of biomolecules to the Lys‐NεH2 groups. By doing so, it preserves their initial conformations and functionalities of the epitopes. We report that SOC4‐glyco‐conjugate bearing two copies of the α2,6‐sialyllactose is specifically recognized by the biotinylated Sambucus nigra (elderberry) bark lectin, which binds preferentially to sialic acid in an α2,6‐linkage. SOC4‐glyco‐conjugate bearing two copies of the α2,3‐sialyllactose was not recognized by the biotinylated Maackia amurensis lectin, despite its well‐known α2,3‐sialyl bond specificity. However, preliminary immune blot assays showed that H1N1 virus binds to both the SOC4‐glyco‐conjugates immobilized onto nitrocellulose membrane. It is concluded that Ac‐SOC4[(Ac)2,(3′SL‐Aoa)2]‐NH2 5 and Ac‐SOC4[(Ac)2,(6′SL‐Aoa)2]‐NH2 6 mimic the HA receptors. These findings could be useful for easy screening of binding and inhibition assays of virus–receptor interactions. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
To investigate the structural role played by isostructural unbranched alkyl‐chains on the conformational ensemble and stability of β‐turn structures, the conformational properties of a designed model peptide: Plm‐Pro‐Gly‐Pda ( 1 , Plm: H3C—(CH2)14—CONH—; Pda: —CONH— (CH2)14—CH3) have been examined and compared with the parent peptide: Boc‐Pro‐Gly‐NHMe ( 2 , Boc: tert‐butoxycarbonyl; NHMe: N‐methylamide). The characteristic 13C NMR chemical‐shifts of the Pro Cβ and Cγ resonances ascertained the incidence of an all‐trans peptide‐bond in low polarity deuterochloroform solution. Using FTIR and 1H NMR spectroscopy, we establish that apolar alkyl‐chains flanking a β‐turn promoting Pro‐Gly sequence impart definite incremental stability to the well‐defined hydrogen‐bonded structure. The assessment of 1H NMR derived thermodynamic parameters of the hydrogen‐bonded amide‐NHs via variable temperature indicate that much weaker hydrophobic interactions do contribute to the stability of folded reverse turn structures. The far‐UV CD spectral patterns of 1 and 2 in 2,2,2‐trifluoroethanol are consistent with Pro‐Gly specific type II β‐turn structure, concomitantly substantiate that the flanking alkyl‐chains induce substantial bias in enhanced β‐turn populations. In view of structural as well as functional importance of the Pro‐Gly mediated secondary structures, besides biochemical and biological significance of proteins lipidation via myristoylation or palmytoilation, we highlight potential convenience of the unbranched Plm and Pda moieities not only as main‐chain N‐ and C‐terminal protecting groups but also to mimic and stabilize specific isolated secondary and supersecondary structural components frequently observed in proteins and polypeptides. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 419–426, 2013.  相似文献   

11.
Conformational energy calculations using an Empirical Conformational Energy Program for Peptides (ECEPP) were carried out on the N-acetyl-N′-methylamides of Pro-X, where X = Ala, Asn, Asp, Gly, Leu, Phe, Ser, and Val, and of X-Pro, where X = Ala, Asn, Gly, and Pro. The conformational energy was minimized from starting conformations which included all combinations of low-energy single-residue minima and several standard bend structures. It was found that almost all resulting minima are combinations of low-energy single-residue minima, suggesting that intra residue interactions predominate in determining conformation. The calculations also indicate, however, that inter residue interactions can be important. In addition, librational entropy was found to influence the relative stabilities of some minima. Because of the existence of 10–100 low-energy minima for each dipeptide, the normalized statistical weight of an individual minimum rarely exceeds 0.3, suggesting that these dipeptides have considerable conformational flexibility and exist as statistical ensembles of low-energy structures. The propensity of each dipeptide to form bend conformations was calculated, and the results were compared with available experimental data. It was found that bends are favored in Pro-X dipeptides because ?Pro is fixed by the pyrrolidine ring in a conformation which is frequently found in bends, but that bends are not favored in X-Pro dipeptides because interactions between the X residue and the pyrrolidine ring restrict the X residue to conformations which are not usually found in bends.  相似文献   

12.
α,β‐Dehydroamino acid esters occur in nature. To investigate their conformational properties, a systematic theoretical analysis was performed on the model molecules Ac‐ΔXaa‐OMe [ΔXaa = ΔAla, (E)‐ΔAbu, (Z)‐ΔAbu, ΔVal] at the B3LYP/6‐311+ + G(d,p) level in the gas phase as well as in chloroform and water solutions with the self‐consistent reaction field‐polarisable continuum model method. The Fourier transform IR spectra in CCl4 and CHCl3 have been analysed as well as the analogous solid state conformations drawn from The Cambridge Structural Database. The ΔAla residue has a considerable tendency to adopt planar conformations C5 (?, ψ ≈ ? 180°, 180°) and β2 (?, ψ ≈ ? 180°, 0°), regardless of the environment. The ΔVal residue prefers the conformation β2 (?, ψ ≈ ? 120°, 0°) in a low polar environment, but the conformations α (?, ψ ≈ ? 55°, 35°) and β (?, ψ ≈ ? 55°, 145°) when the polarity increases. The ΔAbu residues reveal intermediate properties, but their conformational dispositions depend on configuration of the side chain of residue: (E)‐ΔAbu is similar to ΔAla, whereas (Z)‐ΔAbu to ΔVal. Results indicate that the low‐energy conformation β2 is the characteristic feature of dehydroamino acid esters. The studied molecules constitute conformational patterns for dehydroamino acid esters with various side chain substituents in either or both Z and E positions. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
A peptide, N‐Ac‐Phe‐Tyr‐NH2, with angiotensin I‐converting enzyme (ACE) inhibitor activity was synthesized by an α‐chymotrypsin‐catalyzed condensation reaction of N‐acetyl phenylalanine ethyl ester (N‐Ac‐Phe‐OEt) and tyrosinamide (Tyr‐NH2). Three kinds of solvents: a Tris–HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic‐aqueous solvent (Tris‐HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N‐Ac‐Phe‐Tyr‐NH2 could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N‐Ac‐Phe‐Tyr‐NH2, so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

14.
Young Kee Kang  In Kee Yoo 《Biopolymers》2014,101(11):1077-1087
Conformational preferences of 9‐ and 14‐helix foldamers have been studied for γ‐dipeptides of 2‐aminocyclohexylacetic acid (γAc6a) residues such as Ac‐(γAc6a)2‐NHMe ( 1 ), Ac‐(Cα‐Et‐γAc6a)2‐NHMe ( 2 ), Ac‐(γAc6a)2‐NHBn ( 3 ), and Ac‐(Cα‐Et‐γAc6a)2‐NHBn ( 4 ) at the M06‐2X/cc‐pVTZ//M06‐2X/6‐31 + G(d) level of theory to explore the influence of substituents on their conformational preferences. In the gas phase, the 9‐helix foldamer H9 and 14‐helix foldamer H14‐z are found to be most preferred for dipeptides 2 and 4 , respectively, as for dipeptides 1 and 3 , which indicates no remarkable influence of the Cα‐ethyl substitution on conformational preferences. The benzyl substitution at the C‐terminal end lead H14‐z to be the most preferred conformer for dipeptides 3 and 4 , whereas it is H9 for dipeptides 1 and 2 , which can be ascribed to the favored C? H···π interactions between the cyclohexyl group of the first residue and the C‐terminal benzyl group. There are only marginal changes in backbone structures and the distances and angles of H‐bonds for all local minima by Cα‐ethyl and/or benzyl substitutions. Although vibrational frequencies and intensities of the dipeptide 4 calculated at both M06‐2X/6‐31 + G(d) and M05‐2X/6‐31 + G(d) levels of theory are consistent with observed results in the gas phase, H14‐z is predicted to be most preferred by ΔG only at the former level of theory. Hydration did not bring the significant changes in backbone structures of helix foldamers for both dipeptide 1 and 4 . It is expected that the different substitutions at the C‐terminal end lead to the different helix foldamers, which may increase the resistance of helical structures to proteolysis and provide the more surface to the helical structures suitable for molecular recognition. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1077–1087, 2014.  相似文献   

15.
The non‐toxic compound N‐acetyl‐L‐phosphinothricin (N‐Ac‐L‐PPT) is used in a so‐called deacetylation system to induce male sterility in transgenic plants by tapetum specific deacetylation to the herbicide L‐phosphinothricin (L‐PPT). A procedure was developed to produce pure racemic and L‐isomeric N‐Ac‐PPT containing less than 30 ppm residual PPT. Experiments applied to wild type tobacco and PPT‐resistant tobacco showed that the maximal tolerated N‐Ac‐PPT concentration would be less than 45 mM of the L‐isomer. Otherwise unspecific deacetylation by several acylases, as well as by environmental conditions like higher temperatures or pHs beyond neutrality, increased the residual L‐PPT content to toxic concentrations. In contrast, N‐acetyl‐L‐phosphinothricyl‐alanyl‐alanine (N‐Ac‐L‐PPTT), a substance also occurring during the biosynthesis of phosphinothricyl‐alanyl‐alanine (PPTT) by some Streptomyces species, was tolerated up to 274 mM by wild type tobacco plants. However, the ArgE deacatylase from Escherichia coli originally used in the deacetylation system, as well as some other acylases, showed no activity towards N‐Ac‐L‐PPTT.  相似文献   

16.
We describe the synthesis and the conformational analysis by ir, CD, and proton-nmr spectroscopy of four model peptides of the type N-Ac-Tyr-X-His-NH2 with X = Val, Leu, Ala, Gly. These peptides represent the central sequence of the hormone angiotensin II and its position-5 analogs. We studied their conformational behavior in aqueous solution during pH titration and in organic solvents. For specific purposes of spectral analysis (ir band assignment, proton-nmr signal assignment, heteronuclear vicinal coupling constants), we synthesized three isotopically enriched homologs of the mother sequence, i.e., N-Ac-(15N-Tyr)-Val-His-NH2, N-Ac-(13C, 2H, Tyr)-Val-His-NH2, and N-Ac-Tyr-(13C, 2H, Val)-His-NH2. Results are summarized as follows: the tyrosine and the histidine side chains influence each other through space; this mutual influence is modulated by the nature of the side chain in position X and decreases in going from X?Val to X?Gly as a consequence of two simultaneous events, changes in the side-chain rotamer distribution and changes in the φ and ψ angles of residue X. The decrease in the bulkiness of the side-chain X (Val → Gly) leads to increased flexibility of the peptide backbone at this site, which is also reflected in the apparent ratio of C5, C7, and intermediate conformations present in equilibrium. The three spectroscopic techniques, in addition to the results of chymotryptic degradation experiments, show a high level of agreement, and all reflect the dynamic conformation of these peptides in a different manner.  相似文献   

17.
NagZ is an N‐acetyl‐β‐d ‐glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram‐negative bacteria by removing N‐acetyl‐glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6‐anhydromuramoyl‐peptide products generated by NagZ activate β‐lactam resistance in many Gram‐negative bacteria by inducing the expression of AmpC β‐lactamase. Blocking NagZ activity can thereby suppress β‐lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X‐ray structures of NagZ bound to the potent yet non‐selective N‐acetyl‐β‐glucosaminidase inhibitor PUGNAc (O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene) amino‐N‐phenylcarbamate), and two NagZ‐selective inhibitors – EtBuPUG, a PUGNAc derivative bearing a 2‐N‐ethylbutyryl group, and MM‐156, a 3‐N‐butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM‐156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N‐acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.  相似文献   

18.
19.
De novo design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α,β‐didehydroamino acids, especially α,β‐didehydrophenylalanine (ΔzPhe), comes in use for spawning well‐defined structural motifs. Introduction of ΔPhe induces β‐bends in small and 310‐helices in longer peptide sequences. The present work aims to investigate the effect of nature and the number of amino acids interspersed between two ΔPhe residues in two model undecapeptides, Ac‐Gly‐Ala‐ΔPhe‐Ile‐Val‐ΔPhe‐Ile‐Val‐ΔPhe‐Ala‐Gly‐NH2 (I) and Boc‐Val‐ΔPhe‐Phe‐Ala‐Phe‐ΔPhe‐Phe‐Leu‐Ala‐ΔPhe‐Gly‐OMe (II). Peptide I was synthesized using solid‐phase chemistry and characterized using circular dichroism spectroscopy. Peptide II was synthesized using solution‐phase chemistry and characterized using circular dichroism and nuclear magnetic resonance spectroscopy. Peptide I was designed to examine the effect of incorporating β‐strand‐favoring residues like valine and isoleucine as spacers between two ΔPhe residues on the final conformation of the resulting peptide. Circular dichroism studies on this peptide have shown the existence of a 310‐helical conformation. Peptide II possesses three amino acids as spacers between ΔPhe residues and has been reported to adopt a mixed 310/α‐helical conformation using circular dichroism and nuclear magnetic resonance spectroscopy studies. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
The crystal structure of N-acetyl-L -4-hydroxyproline (Hyp) was determined by direct methods. (The crystal is orthorhombic with the space group P212121.) The acetyl group is in the trans conformation and the pyrrolidine ring puckers at Cγ (CsCγ envelope), as in most Hyp residues. According to the rotation angle ψ = ?30°, the N-acetyl-L -4Hyp has the same conformation as an α-helix of prolyl residues. The crystal packing is stabilized by hydrogen bonds between three different molecules and the same molecule of water. One of the water bridges involves the carbonyl of the N-acetyl group of one molecule and the hydrogen atom of the 4-OH group of another. Such an arrangement has been proposed to explain the high stability of (Gly-L -Pro-L -4Hyp)n. A second bridge involves the two hydrogens of the water molecule and the carbonyl groups of two neighbouring molecules, as already proposed in a dihydrated model of collagen. These experimental features, which are discussed in relation to the different models of collagen, allow us to propose an hypothetical arrangement for the water molecule which is strongly retained in the triple helix of (Gly-L -Pro-L -4Hyp)n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号