首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slc11a1 is an integral membrane protein with 12 putative transmembrane domains (TMDs) and functions as a pH‐coupled divalent metal cation transporter. The conservation of three negatively charged residues in the TMD3 of Slc11 protein family implies the important role of this domain in the function of the proteins. However, aggregation of the transmembrane peptide in micelles prevents structural study of the peptide in these membrane‐mimetic environments by NMR spectroscopy. Here, we characterized the structure, position, and assembly model of Slc11a1‐TMD3 (Lys128‐Ile151) in SDS micelles by the NMR study of its Leu‐substituted peptide. It was found that the two‐site substitutions of Ala for Leu residues at positions 136 and 140 of TMD3 disrupt the aggregation without altering the secondary structure of the peptide. The Leu‐substituted peptide folds as an α‐helix spanning from Leu133 to Gly144 and embedded in the micelles. A Leu zipper is suggested to account for the self‐assembly of the wild‐type peptide in SDS micelles. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The structure and self‐assembly of the peptide corresponding to the third transmembrane domain (TMD3) of Slc11a1 and its E139A mutant are studied in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) aqueous solution by NMR and CD experiments. Slc11a1 is an integral membrane protein with 12 putative TMDs and functions as a pH‐coupled divalent metal cation transporter. Glu139 of Slc11a1 is highly conserved within predicted TMD3 of the Slc11 protein family and function‐associated. Here, we provide the first direct experimental evidence for the structural features of two 24‐residue peptides corresponding to TMD3 of Slc11a1 and its E139A mutant in 60% HFIP‐d2 aqueous solution using CD and NMR spectroscopies. Our study shows that the membrane‐spanning peptide folds as a typical amphipathic α‐helix structure from Ile5 to Met20 with hydrophilic residues Glu12 (Glu139 in Slc11a1) and Asp19 lying on the same side of the helix. The substitution of Glu139 by an alanine residue has little effect on the structure of the peptide, but increases hydrophobicity and facilitates self‐assembly of the peptide. Although the wildtype peptide is monomeric in HFIP aqueous solution, the E139A mutant forms a dimer. The increase in hydrophobicity of the membrane‐spanning peptide and/or change in the interactions between transmembrane segments induced by E139A mutation may affect the metal ion transport of the protein. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The human copper transporter 1 (hCtr1) mediates cellular uptake of copper and Pt‐based chemotherapeutic anticancer drugs. In this paper, we determined the three‐dimensional structure and oligomerization of the transmembrane domains (TMDs) of hCtr1 in 40% HFIP aqueous solution by using solution‐state NMR spectroscopy. We firstly revealed that TMD1 forms an α‐helical structure from Gly67 to Glu84 and is dimerized by close packing of its C‐terminal helix; TMD2 forms an α‐helical structure from Leu134 to Thr155 and is self‐associated as a trimer by the hydrophobic contact of TMD2 monomers; TMD3 adopts a discontinuous helix structure, known as ‘α‐helix‐coiled segment‐α‐helix’, and is dimerized by the interaction between the N‐terminal helices. The motif GxxxG in TMD3 is not fully involved in the helix, but partially unstructured as a linker between helices. The flexible linker of TMD3 may serve as a gating adapter to mediate pore on and off switch. The differences in the structure and aggregation of the TMD peptides may be related to their different roles in the channel formation and transport function. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C‐terminal collagen‐binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C‐terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N‐labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N‐labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C‐terminus of each minicollagen. Small‐angle X‐ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C‐terminus. The HSQC NMR spectra of 15N‐labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix.  相似文献   

5.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

6.
Li J  Wang L  Wang L  Li F 《Biopolymers》2012,98(3):224-233
The importance of solute carrier family 11 (Slc11) in divalent metal-ion transport has been well established. The core domains TMD1-5 and TMD6-10 of the proteins were modeled as a symmetric but inversely orientated arrangement with respect to membrane normal. In this article, the structures and transmembrane topologies of TMD1-5 of Slc11a1 incorporated with phospholipids 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (POPG), and POPC/POPG (3:1) were explored using circular dichroism, fluorescence, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies. The segments TMD2-5 were inserted in lipid membranes mainly as an α-helix with orientations of helices along membrane normal. The tilt angles of the helices were in an order of TMD3 > TMD4 > TMD2 > TMD5 in these membranes. In contrast, TMD1 was partly inserted in membranes, leaving partial segment at membrane surface. The amount of the lipid component with negatively charged headgroups had an effect on both the helicity and orientation of the transmembrane domains (TMDs). Nevertheless, the helices maintained similar topologies in various membranes.  相似文献   

7.
Assembly of transmembrane domains (TMDs) is a critical step in the function of membrane proteins. In recent years, the role of specific amino acids in TMD–TMD interactions has been better characterized, with more emphasis on polar and aromatic residues. Despite the high abundance of proline residues in TMDs, contribution of proline to TMD–TMD association has not been intensively studied. Here, we evaluated statistically the frequency of appearance, and experimentally the contribution of proline, compared to other hydrophobic amino acids (Gly, Ala, Val, Leu, Ile, and Met), with regard to TMD–TMD self-assembly. Our model system is the assembly motif (22QxxS25) found previously in TMDs of the Escherichia coli aspartate receptor (Tar-1). Statistically, our data revealed that all different motifs, except PxxS (P/S), have frequencies similar to their theoretical random expectancy within a database of 41916 sequences of TMDs, while PxxS motif is underrepresented. Experimentally, using the ToxR assembly system, the SDS-gel running pattern of biotin-conjugated TMD peptides, and FRET experiments between fluorescence-labeled peptides, we found that only the P/S motif preserves the dimerization ability of wild-type Tar-1 TMD. Although proline is known as a helix breaker in solution, Circular Dichroism spectroscopy revealed that the secondary structure of the P/S and the wild-type peptides are similar. All together, these data suggest that proline can stabilize TM self-assembly when localized to the interaction interface of a transmembrane oligomer. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

8.
The small (116 amino acids) inner membrane protein MerT encoded by the transposon Tn501 has been overexpressed under the control of the bacteriophage T7 expression system. Random mutants of MerT were made and screened for loss of mercuric ion hypersensitivity. Several mutantmerT genes were selected and sequenced: Cys24Arg and Cys25Tyr mutations abolish mercury resistance, as do charge-substitution mutations in the first predicted transmembrane helix (Glyl4Arg, Glyl5Arg, Gly27Arg, Ala18Asp), and the termination mutations Trp66Ter and Cys82Ter.  相似文献   

9.
Lambdoid phage 21 has the prototype pinholin‐SAR endolysin lysis system, which is widely distributed among phages. Its prototype pinholin, S2168, triggers at an allele‐specific time to form small, heptameric lesions, or pinholes, in the cytoplasmic membrane, thus initiating lysis. S2168 has two transmembrane domains, TMD1 and TMD2. Only TMD2 is required for the formation of pinholes, whereas TMD1 acts as an inhibitor of TMD2 and must be externalized to the periplasm in the lytic pathway. Previously we provided evidence that S2168 first accumulates as inactive dimers with both transmembrane domains embedded in the bilayer. Here we analyse an extensive collection of S21 mutants to identify residues and domains critical to the function and regulation of the pinholin. Evidence is presented indicating that, within the inactive dimer, TMD1 acts in trans as an inhibitor of the lethal function of TMD2. A wide range of phenotypes, from absolute lysis defectives to accelerated lysis triggering, are observed for mutations mapping to each topological domain. The pattern of phenotypes allows the generation of a model for the structure of the inactive dimer. The model identifies the faces of the two transmembrane domains involved in intramolecular and intermolecular interactions, as well as interaction with the lipid.  相似文献   

10.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

11.
Divalent metal‐ion transporter 1 (DMT1) belongs to a large class of metal‐ion transporters that drive the translocation of a wide range of divalent metal substrates across membranes toward the cytosol with couple of protons. Two highly conserved histidines in the sixth transmembrane domain (TMD6) are essential for metal transport activity in DMT1. In the present study, we determine the high‐resolution structures of three 25‐residue peptides, corresponding to TMD6 of the wildtype DMT1 (the segment 255–279) and its H267A and H272A mutants, in 30% TFE‐d2 aqueous solution by the combined use of circular dichroism (CD) and NMR spectroscopies. The wildtype peptide forms an ‘α‐helix‐extended segment‐α‐helix’ structure with two helices spanning over Gly258–Ala262 and Met265–Lys277 linked by a hinge at residues Val263–Ile264. The H267A mutation reduces the hinge to one residue (Ile264), while the H272A mutation extends the flexible region of the central part from Val263 to His267. Diffusion‐ordered spectroscopy (DOSY) study demonstrates that all the peptides are self‐assembly as trimer in 30% TFE‐d2 aqueous solution. The H272A substitution decreases the intermolecular interaction whereas the H267A substitution may enhance the intermolecular interaction. The specific structure of the discontinuous helix and the self‐assembly feature of DMT1–TMD6 may be crucial for its biological function. The changes in conformation and intermolecular interaction induced by histidine substitution may be correlated with the deficiency of DMT1 in metal‐ion permeation. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
t-Buthyoxycarbonyl-L -alanyl-α-aminiosobutyryl-L -alanyl-α-aminoisobutyryl-α-aminoisobutyric acid methyl ester (t-Boc-L -Ala-Aib-L -Ala-Aib-Aib-OMe), C24H43N5O8, an end-protected pentapeptide with a sequence corresponding to the 6th through the 10th residues in suzukacillin, crystallizes in the orthorhombic space group P212121 with a = 11.671, b = 14.534, c = 17.906 Å and z = 4. The molecule exists as a right-handed 310-helix with a pitch of 6.026 Å. The helix is stabilized by three 4 → 1 hydrogen bonds with the NH groups of Ala(3), Aib(4), and Aib(5) hydrogen bonding to the carbonyl oxygens of t-Boc, Ala(1), and Aib(2), respectively. The helical molecules arrange themselves in a head-to-tail fashion along the a direction in such a way that the NH groups of Ala(1) and Aib(2) hydrogen bond to the carbonyl oxygens of Aib(4) and Aib(5), respectively, of a translationally related molecule. The helical columns thus formed close-pack nearly hexagonally to form the crystal.  相似文献   

13.
The crystal structure of Phenylalanyl‐tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl‐tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αβ)2 heterotetramer: the αβ heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N‐terminus, A1 and A2 belong to the α‐subunit and B1‐B8 domains to the β subunit. The structure of EcPheRS revealed that architecture of four helix‐bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil‐short helix structural fragments. The N‐terminal domain of the α‐subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N‐terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNAPhe binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ~5 Å is required for C‐terminal domain B8, and of ~6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS.  相似文献   

14.
Tic110 is a major component of the chloroplast protein import translocon. Two functions with mutually exclusive structures have been proposed for Tic110: a protein‐conducting channel with six transmembrane domains and a scaffold with two N‐terminal transmembrane domains followed by a large soluble domain for binding transit peptides and other stromal translocon components. To investigate the structure of Tic110, Tic110 from Cyanidioschyzon merolae (CmTic110) was characterized. We constructed three fragments, CmTic110A, CmTic110B and CmTic110C, with increasing N‐terminal truncations, to perform small‐angle X‐ray scattering (SAXS) and X‐ray crystallography analyses and Dali structural comparison. Here we report the molecular envelope of CmTic110B and CmTic110C determined by SAXS, and the crystal structure of CmTic110C at 4.2 Å. Our data indicate that the C‐terminal half of CmTic110 possesses a rod‐shaped helix‐repeat structure that is too flattened and elongated to be a channel. The structure is most similar to the HEAT‐repeat motif that functions as scaffolds for protein–protein interactions.  相似文献   

15.
Mainly present in the mitochondria, the translocator protein, TSPO, previously known as the peripheral benzodiazepine receptor, is a small essential membrane protein, involved in the translocation of cholesterol across mitochondrial membranes, a rate determining step in steroids biosynthesis. We previously reported the structure of five fragments encompassing the five putative transmembrane helices and showed that each of these fragments constitutes an autonomous folding unit. To further characterize the structural determinants responsible for helix–helix association of this membrane protein, we now investigate the folding of double transmembrane domains in various detergent micelles. Herein, we present the successful biosynthesis of a double transmembrane domain encompassing the last two C‐terminal helices (TM4TM5). For optimal production of this domain in Escherichia coli, the evaluation of various peptide constructs, including TM4TM5 fused to different purification tags or to solubilizing proteins, was necessary. The protocol of production of TM4TM5 with more than 95% purity is reported. This domain was further characterized using circular dichroism and solution state NMR. Far‐UV circular dichroism studies indicate that the secondary structure of TM4TM5 is highly helical when solubilized in various detergent micelles including n‐dodecyl‐β‐d ‐maltoside, n‐octyl‐β‐d ‐glucoside, n‐dodecylphosphocholine, 1,2‐dihexanoyl‐sn‐glycero‐3‐phosphocholine (DHPC), and 1‐palmitoyl‐2‐hydroxy‐sn‐glycero‐3‐phospho‐(1′‐rac‐glycerol). In addition, the solubilization conditions of the domain were optimized for NMR experiments, and preliminary analysis indicates that TM4TM5 adopts a stable tertiary fold within the TM4TM5‐DHPC complex. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The mechanosensitive channel of small conductance (MscS) contributes to the survival of bacteria during osmotic downshock by transiently opening large diameter pores for the efflux of cellular contents before the membrane ruptures. Two crystal structures of the Escherichia coli MscS are currently available, the wild type protein in a nonconducting state at 3.7 Å resolution (Bass et al., Science 2002; 298:1582–1587) and the Ala106Val variant in an open state at 3.45 Å resolution (Wang et al., Science 2008; 321:1179–1183). Both structures used protein solubilized in the detergent fos‐choline‐14. We report here crystal structures of MscS from E. coli and Helicobacter pylori solubilized in the detergent β‐dodecylmaltoside at resolutions of 4.4 and 4.2 Å, respectively. While the cytoplasmic domains are unchanged in these structures, distinct conformations of the transmembrane domains are observed. Intriguingly, β‐dodecylmaltoside solubilized wild type E. coli MscS adopts the open state structure of A106V E. coli MscS, while H. pylori MscS resembles the nonconducting state structure observed for fos‐choline‐14 solubilized E. coli MscS. These results highlight the sensitivity of membrane protein conformational equilibria to variations in detergent, crystallization conditions, and protein sequence.  相似文献   

17.
Mitochondria are double‐membrane‐bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N‐terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane‐bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C‐terminal amphipathic tail of the Atlastin protein.  相似文献   

18.
The standard collagen triple‐helix requires a perfect (Gly‐Xaa‐Yaa)n sequence, yet all nonfibrillar collagens contain interruptions in this tripeptide repeating pattern. Defining the structural consequences of disruptions in the sequence pattern may shed light on the biological role of sequence interruptions, which have been suggested to play a role in molecular flexibility, collagen degradation, and ligand binding. Previous studies on model peptides with 1‐ and 4‐residue interruptions showed a localized perturbation within the triple‐helix, and this work is extended to introduce natural collagen interruptions up to nine residue in length within a fixed (Gly‐Pro‐Hyp)n peptide context. All peptides in this set show decreases in triple‐helix content and stability, with greater conformational perturbations for the interruptions longer than five residue. The most stable and least perturbed structure is seen for the 5‐residue interruption peptide, whose sequence corresponds to a Gly to Ala missense mutation, such as those leading to collagen genetic diseases. The triple‐helix peptides containing 8‐ and 9‐residue interruptions exhibit a strong propensity for self‐association to fibrous structures. In addition, a small peptide modeling only the 9‐residue sequence within the interruption aggregates to form amyloid‐like fibrils with antiparallel β‐sheet structure. The 8‐ and 9‐residue interruption sequences studied here are predicted to have significant cross‐β aggregation potential, and a similar propensity is reported for ~10% of other naturally occurring interruptions. The presence of amyloidogenic sequences within or between triple‐helix domains may play a role in molecular association to normal tissue structures and could participate in observed interactions between collagen and amyloid.  相似文献   

19.
Protein 3a is a 274 amino acid polytopic channel protein with three putative transmembrane domains (TMDs) encoded by severe acute respiratory syndrome corona virus (SARS‐CoV). Synthetic peptides corresponding to each of its three individual transmembrane domains (TMDs) are reconstituted into artificial lipid bilayers. Only TMD2 and TMD3 induce channel activity. Reconstitution of the peptides as TMD1 + TMD3 as well as TMD2 + TMD3 in a 1 : 1 mixture induces membrane activity for both mixtures. In a 1 : 1 : 1 mixture, channel like behavior is almost restored. Expression of full length 3a and reconstitution into artificial lipid bilayers reveal a weak cation selective (PK ≈ 2 PCl) rectifying channel. In the presence of nonphysiological concentration of Ca‐ions the channel develops channel activity. © 2013 Wiley Periodicals, Inc. Biopolymers 99:628–635, 2013.  相似文献   

20.
N-myristoylation of eukaryotic cellular proteins has been recognized as a modification that occurs mainly on cytoplasmic proteins. In this study, we examined the membrane localization, membrane integration, and intracellular localization of four recently identified human N-myristoylated proteins with predicted transmembrane domains. As a result, it was found that protein Lunapark, the human ortholog of yeast protein Lnp1p that has recently been found to be involved in network formation of the endoplasmic reticulum (ER), is an N-myristoylated polytopic integral membrane protein. Analysis of tumor necrosis factor-fusion proteins with each of the two putative transmembrane domains and their flanking regions of protein Lunapark revealed that transmembrane domain 1 and 2 functioned as type II signal anchor sequence and stop transfer sequence, respectively, and together generated a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. Immunofluorescence staining of HEK293T cells transfected with a cDNA encoding protein Lunapark tagged with FLAG-tag at its C-terminus revealed that overexpressed protein Lunapark localized mainly to the peripheral ER and induced the formation of large polygonal tubular structures. Morphological changes in the ER induced by overexpressed protein Lunapark were significantly inhibited by the inhibition of protein N-myristoylation by means of replacing Gly2 with Ala. These results indicated that protein N-myristoylation plays a critical role in the ER morphological change induced by overexpression of protein Lunapark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号