首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data. Our study provides detailed atomic-resolution information on transient local and long-range structure, as well as fast time scale dynamics in this NS5A fragment. In addition, we could characterize two distinct interaction modes with the SH3 domain of Bin1 (bridging integrator protein 1), a pro-apoptotic tumor suppressor. Despite being largely disordered, the protein contains three regions that transiently adopt α-helical structures, partly stabilized by long-range tertiary interactions. Two of these transient α-helices form a noncanonical SH3-binding motif, which allows low-affinity SH3 binding. Our results contribute to a better understanding of the role of the NS5A protein during hepatitis C virus infection. The present work also highlights the power of NMR spectroscopy to characterize multiple binding events including short-lived transient interactions between globular and highly disordered proteins.  相似文献   

2.
3.
The non‐structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1–CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c‐Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c‐Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c‐Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c‐Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c‐Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.  相似文献   

4.
Tran T  Hoffmann S  Wiesehan K  Jonas E  Luge C  Aladag A  Willbold D 《Biochemistry》2005,44(45):15042-15052
We analyzed the ligand binding specificity of the lymphocyte specific kinase (Lck) SH3 domain. We identified artificial Lck SH3 ligands using phage display. In addition, we analyzed Lck SH3 binding sites within known natural Lck SH3 binding proteins using an Lck specific binding assay on membrane-immobilized synthetic peptides. On one hand, from the phage-selected peptides, representing mostly special class I' ligands, a well-defined consensus sequence was obtained. Interestingly, a histidine outside the central polyproline motif contributes significantly to Lck SH3 binding affinity and specificity. On the other hand, we confirmed previously mapped Lck SH3 binding sites in ADAM15, HS1, SLP76, and NS5A, and identified putative Lck SH3 binding sites of Sam68, FasL, c-Cbl, and Cbl-b. Without exception, the comparatively diverse Lck SH3 binding sites of all analyzed natural Lck SH3 binding proteins emerged as class II proteins. Possible explanations for the observed variations between artificial and native ligands-which are not due to significant K(D) value differences as shown by calculating Lck SH3 affinities of artificial peptide PD1-Y(-3)R as well as for peptides comprising putative Lck SH3 binding sites of NS5A, Sos, and Sam68-are discussed. Our data suggest that phage display, a popular tool for determining SH3 binding specificity, must-at least in the case of Lck-not irrevocably mirror physiologically relevant protein-ligand interactions.  相似文献   

5.
Hepatitis C virus non-structural protein 5A (NS5A) is a pleiotropic protein with key roles in viral RNA replication, modulation of cellular-signaling pathways and interferon (IFN) responses. To search for possible host factors involved in mediating these functions of NS5A, we adopted an affinity purification approach coupled with mass spectrometry to examine protein-protein interactions, and found that human amphiphysin II (also referred to as Bin1) specifically interacts with NS5A in mammalian cells. Pull-down assays showed that the Src homology 3 (SH3) domain of amphiphysin II is required for NS5A interaction and that c-Src also interacts with NS5A in cells. IFN-alpha treatment reduced the interaction of NS5A with c-Src, but not amphiphysin II, suggesting that the latter is independent of the IFN-signaling pathway. NS5A is a phosphoprotein and its phosphorylation status is considered to have an effect on viral RNA replication. In vitro kinase assays demonstrated that its interaction with amphiphysin II inhibits phosphorylation of NS5A. These results suggest that amphiphysin II participates in the HCV life cycle by modulating the phosphorylation of NS5A.  相似文献   

6.
Persistent infections with hepatitis C virus (HCV) are a major cause of liver disease and reflect its ability to disrupt virus-induced signaling pathways activating cellular antiviral defenses. HCV evasion of double-stranded RNA signaling through Toll-like receptor 3 is mediated by the viral protease NS3/4A, which directs proteolysis of its proline-rich adaptor protein, Toll-IL-1 receptor domain containing adaptor-inducing interferon-beta (TRIF). The TRIF cleavage site has remarkable homology with the viral NS4B/5A substrate, although an 8-residue polyproline track extends upstream from the P(6) position in lieu of the acidic residue present in viral substrates. Circular dichroism (CD) spectroscopy confirmed that a substantial fraction of TRIF exists as polyproline II helices, and inclusion of the polyproline track increased affinity of P side TRIF peptides for the HCV-BK protease. A polyproline II peptide representing an SH3 binding motif (PPPVPPRRR, Sos) bound NS3 with moderate affinity, resulting in inhibition of proteolytic activity. Chemical shift perturbations in NMR spectra indicated that Sos binds a 3(10) helix close to the protease active site. Thus, a polyproline II interaction with the 3(10) helix likely facilitates NS3/4A recognition of TRIF, indicating a significant difference from NS3/4A recognition of viral substrates. Because SH3 binding motifs are also present in NS5A, a viral protein that interacts with NS3, we speculate that the NS3 3(10) helix may be a site of interaction with other viral proteins.  相似文献   

7.
The non‐structural protein 1 (A/NS1) of influenza A viruses (IAV) harbours several src‐homology domain (SH) binding motifs that are required for interaction with cellular proteins. The SH3 binding motif at aa212‐217 [PPLPPK] of A/NS1 was shown to be essential for binding to the cellular adaptor proteins CRK and CRKL. Both regulate diverse cellular effector pathways, including activation of the MAP‐kinase JNK that in turn mediates antiviral responses to IAV infection. By studying functional consequences of A/NS1–CRK interaction we show here that A/NS1 binding to CRK contributes to suppression of the antiviral‐acting JNK–ATF2 pathway. However, only IAV that encode an A/NS1‐protein harbouring the CRK/CRKL SH3 binding motif PPLPPK were attenuated upon downregulation of CRKI/II and CRKL, but not of CRKII alone. The PPLPPK site‐harbouring candidate strains could be discriminated from other strains by a pronounced viral activation of the JNK–ATF2 signalling module that was even further boosted upon knock‐down of CRKI/II. Interestingly, this enhanced JNK activation did not alter type‐I IFN‐expression, but rather resulted in increased levels of virus‐induced cell death. Our results imply that binding capacity of A/NS1 to CRK/CRKL has evolved in virus strains that over‐induce the antiviral acting JNK–ATF2 signalling module and helps to suppress the detrimental apoptosis promoting action of this pathway.  相似文献   

8.
Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein’s interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191–447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and β-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.  相似文献   

9.
Bin1/M-amphiphysin-II is an amphiphysin-II isoform highly expressed in transverse tubules of adult striated muscle and is implicated in their biogenesis. Bin1 contains a basic unique amino-acid sequence, Exon10, which interacts with certain phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), to localize to membranes. Here we found that Exon10 also binds to the src homology 3 (SH3) domain of Bin1 itself, and hence blocks the binding of the SH3 domain to its canonical PxxP ligands, including dynamin. This blockage was released by addition of PI(4,5)P(2) in vitro or in cells overexpressing phosphatidylinositol 4-phosphate 5-kinase. The Exon10-binding interface of the Bin1 SH3 domain largely overlapped with its PxxP-binding interface. We also show that the PLCdelta pleckstrin homology domain, another PI(4,5)P(2)-binding module, cannot substitute for Exon10 in Bin1 function in transverse tubule formation, and suggest the importance of the dual biochemical properties of Exon10 in myogenesis. Our results exemplify a novel mechanism of SH3 domain regulation, and suggest that the SH3-mediated protein-protein interactions of Bin1 are regulated by Exon10 so that it may only occur when Bin1 localizes to certain submembrane areas.  相似文献   

10.
Hepatitis C virus (HCV) non‐structural protein 5A (NS5A) is a multifunctional protein that is involved in the HCV life cycle and pathogenesis. In this study, a host protein(s) interacting with NS5A by tandem affinity purification were searched for with the aim of elucidating the role of NS5A. An NS5A‐interacting protein, SET and MYND domain‐containing 3 (SMYD3), a lysine methyltransferase reportedly involved in the development of cancer, was identified. The interaction between NS5A and SMYD3 was confirmed in ectopically expressing, HCV RNA replicon‐harboring and HCV‐infected cells. The other HCV proteins did not bind to SMYD3. SMYD3 bound to NS5A of HCV genotypes 1b and 2a. Deletion mutational analysis revealed that domains II and III of NS5A (amino acids [aa] 250 to 447) and the MYND and N‐SET domains of SMYD3 (aa 1 to 87) are involved in the full extent of NS5A‐SMYD3 interaction. NS5A co‐localized with SMYD3 exclusively in the cytoplasm, thereby inhibiting nuclear localization of SMYD3. Moreover, NS5A formed a complex with SMYD3 and heat shock protein 90 (HSP90), which is a positive regulator of SMYD3. The intensity of binding between SMYD3 and HSP90 was enhanced by NS5A. Luciferase reporter assay demonstrated that NS5A significantly induces activator protein 1 (AP‐1) activity, this being potentiated by co‐expression of SMYD3 with NS5A. Taken together, the present results suggest that NS5A interacts with SMYD3 and induces AP‐1 activation, possibly by facilitating binding between HSP90 and SMYD3. This may be a novel mechanism of AP‐1 activation in HCV‐infected cells.  相似文献   

11.
Shin YK  Li Y  Liu Q  Anderson DH  Babiuk LA  Zhou Y 《Journal of virology》2007,81(23):12730-12739
Recent studies have demonstrated that influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by binding of influenza NS1 protein to the p85 regulatory subunit of PI3K. Our previous study proposed that two polyproline motifs in NS1 (amino acids 164 to 167 [PXXP], SH3 binding motif 1, and amino acids 213 to 216 [PPXXP], SH3 binding motif 2) may mediate binding to the p85 subunit of PI3K. Here we performed individual mutational analyses on these two motifs and demonstrated that SH3 binding motif 1 contributes to the interactions of NS1 with p85β, whereas SH3 binding motif 2 is not required for this process. Mutant viruses carrying NS1 with mutations in SH3 binding motif 1 failed to interact with p85β and induce the subsequent activation of PI3K/Akt pathway. Mutant virus bearing mutations in SH3 binding motif 2 exhibited similar phenotype as the wild-type (WT) virus. Furthermore, viruses with mutations in SH3 binding motif 1 induced more severe apoptosis than did the WT virus. Our data suggest that SH3 binding motif 1 in NS1 protein is required for NS1-p85β interaction and PI3K/Akt activation. Activation of PI3K/Akt pathway is beneficial for virus replication by inhibiting virus induced apoptosis through phosphorylation of caspase-9.  相似文献   

12.
NS1 (nonstructural protein 1) is an important virulence factor of the influenza A virus. We observed that NS1 proteins of the 1918 pandemic virus (A/Brevig Mission/1/18) and many avian influenza A viruses contain a consensus Src homology 3 (SH3) domain-binding motif. Screening of a comprehensive human SH3 phage library revealed the N-terminal SH3 of Crk and CrkL as the preferred binding partners. Studies with recombinant proteins confirmed avid binding of NS1 proteins of the 1918 virus and a representative avian H7N3 strain to Crk/CrkL SH3 but not to other SH3 domains tested, including p85alpha and p85beta. Endogenous CrkL readily co-precipitated NS1 from cells infected with the H7N3 virus. In transfected cells association with CrkL was observed for NS1 of the 1918 and H7N3 viruses but not A/Udorn/72 or A/WSN/33 NS1 lacking this sequence motif. SH3 binding was dispensable for suppression of interferon-induced gene expression by NS1 but was associated with enhanced phosphatidylinositol 3-kinase signaling, as evidenced by increased Akt phosphorylation. Thus, the Spanish Flu virus resembles avian influenza A viruses in its ability to recruit Crk/CrkL to modulate host cell signaling.  相似文献   

13.
14.
15.
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.  相似文献   

16.
ISG15 (interferon-stimulated gene 15), the first ubiquitin-like protein (UBL) identified, has emerged as an important cellular antiviral factor. It consists of two UBL domains with a short linker between them. The covalent attachment of ISG15 to host and viral proteins to modify their functions, similar to ubiquitylation, is named ISGylation. Influenza B virus NS1B protein antagonizes human but not mouse ISGylation because NS1B exhibits species specificity; it only binds human and non-human primate ISG15. Previous studies have demonstrated that the N-terminal UBL domain and linker of ISG15 are required for the binding by NS1B and that the linker plays a large role in the species specificity, but the structural basis for them has not been elucidated. Here we report the crystal structure of human ISG15 in complex with NS1B at a resolution of 2.0 Å. A loop in the ISG15 N-terminal UBL domain inserts into a pocket in the NS1B dimer, forming a high affinity binding site. The nonspecific van der Waals contacts around the ISG15 linker form a low affinity site for NS1B binding. However, sequence alignment reveals that residues in the high affinity site are highly conserved in primate and non-primate ISG15. We propose that the low affinity binding around the ISG15 linker is important for the initial contact with NS1B and that the stable complex formation is largely contributed by the following high affinity interactions between ISG15 N-terminal UBL domain and NS1B. This provides a structural basis for the species-specific binding of ISG15 by the NS1B protein.  相似文献   

17.
Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady‐state levels through the ubiquitin–proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual‐specificity tyrosine‐(Y)‐phosphorylation‐regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co‐localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser‐131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A‐mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin‐conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A‐mediated phosphorylation inhibited the neuroprotective action of parkin against 6‐hydroxydopamine toxicity in dopaminergic SH‐SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD‐inducing pathological conditions.

  相似文献   


18.
The mechanism and kinetics of the interactions between ligands and immobilized full‐length hepatitis C virus (HCV) genotype 1a NS3 have been characterized by SPR biosensor technology. The NS3 interactions for a series of NS3 protease inhibitors as well as for the NS4A cofactor, represented by a peptide corresponding to the sequence interacting with the enzyme, were found to be heterogeneous. It may represent interactions with two stable conformations of the protein. The NS3–NS4A interaction consisted of a high‐affinity (KD = 50 nM) and a low‐affinity (KD = 2 µM) interaction, contributing equally to the overall binding. By immobilizing NS3 alone or together with NS4A it was shown that all inhibitors had a higher affinity for NS3 in the presence of NS4A. NS4A thus has a direct effect on the binding of inhibitors to NS3 and not only on catalysis. As predicted, the mechanism‐based inhibitor VX 950 exhibited a time‐dependent interaction with a slow formation of a stable complex. BILN 2061 or ITMN‐191 showed no signs of time‐dependent interactions, but ITMN‐191 had the highest affinity of the tested compounds, with both the slowest dissociation (koff) and fastest association rate, closely followed by BILN 2061. The koff for the inhibitors correlated strongly with their NS3 protease inhibitory effect as well as with their effect on replication of viral proteins in replicon cell cultures, confirming the relevance of the kinetic data. This approach for obtaining kinetic and mechanistic data for NS3 protease inhibitor and cofactor interactions is expected to be of importance for understanding the characteristics of HCV NS3 functionality as well as for anti‐HCV lead discovery and optimization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A Disintegrin And Metalloprotease (ADAM15) is a member of the adamalysin protein family and has been associated with cancer, possibly via its role in ectodomain shedding of cadherins. Alternative mRNA splicing generates several ADAM15 isoforms containing different combinations of putative Src homology‐3 (SH3) domain binding sites in their cytosolic tails. Here we present a comprehensive characterization of SH3 binding potential of different ADAM15 isoforms. Alternative use of ADAM15 exons was found to profoundly influence selection of SH3‐containing cellular partner proteins, including the avid interactions with nephrocystin and sorting nexin‐33 (SNX33 a.k.a. SNX30). Specifically, strong co‐precipitation of nephrocystin from cell lysates was specific to ADAM15 isoforms i4, i5, and i6. These isoforms contain one or both of the two almost identical proline‐rich regions encoded by exons 20 and 21, wherein the residues RxLPxxP were found to be indispensable for nephrocystin SH3 binding. Similarly, robust cellular association with SNX33 was observed only for ADAM15 isoforms containing the most carboxyterminal proline cluster lacking in isoforms i1 and i3. Thus, alternative mRNA splicing provides a versatile mechanism for regulation of intracellular protein interactions and thereby likely the cellular functions of ADAM15, which could explain the association with cancer of some but not all ADAM15 isoforms. J. Cell. Biochem. 108: 877–885, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号