首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

2.
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.  相似文献   

3.
The most challenging target in the design of new antimicrobial agents is the development of antibiotic resistance. Antimicrobial peptides are good candidates as lead compounds for the development of novel anti‐infective drugs. Here we propose the sequential substitution of each Ala residue present in a lead peptide with known antimicrobial activity by specific amino acids, rationally chosen, that could enhance the activity of the resultant peptide. Taking the fragment 107–115 of the human lysozyme as lead, two‐round screening by sequentially replacing both Ala residues (108 and 111) by distinct amino acids resulted in a novel peptide with 4‐ and 20‐fold increased antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. These results reinforce the strategy proposed, which, in combination with simple and easy screening tools, will contribute to the rapid development of new therapeutic peptides required by the market. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Co‐administration of beta‐lactam antibiotics and beta‐lactamase inhibitors has been a favored treatment strategy against beta‐lactamase‐mediated bacterial antibiotic resistance, but the emergence of beta‐lactamases resistant to current inhibitors necessitates the discovery of novel non‐beta‐lactam inhibitors. Peptides derived from the Ala46–Tyr51 region of the beta‐lactamase inhibitor protein are considered as potent inhibitors of beta‐lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell‐penetrating peptides could guide the design of beta‐lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta‐lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell‐penetrating peptide pVEC, our approach involved the addition of the N‐terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta‐lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta‐lactam antibiotic ampicillin, and the beta‐lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N‐terminus of the beta‐lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N‐terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
BmK AS is a β long-chain scorpion peptide from the venom of Buthus martensii Karsch (BmK). It was efficiently expressed as a soluble and functional peptide in Escherichia coli, and purified by metal chelating chromatography. About 4.2 mg/l purified recombinant BmK AS could be obtained. The recombinant BmK AS maintained a similar analgesic activity to the natural one in both the mouse-twisting test and hot-plate procedure. It also exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria. BmK AS is the first long-chain scorpion peptide reported to have antimicrobial activity, and is a valuable molecular scaffold for pharmacological research.  相似文献   

6.
Designing new antimicrobial peptides (AMPs) focuses heavily on the activity of the peptide and less on the elements that stabilize the secondary structure of these peptides. Studies have shown that improving the structure of naturally occurring AMPs can affect activity and so here we explore the relationship between structure and activity of two non‐naturally occurring AMPs. We have used a backbone‐cyclized peptide as a template and designed an uncyclized analogue of this peptide that has antimicrobial activity. We focused on beta‐hairpin‐like structuring features. Improvements to the structure of this peptide reduced the activity of the peptide against gram‐negative, Escherichia coli but improved the activity against gram‐positive, Corynebacterium glutamicum. Distinctions in structuring effects on gram‐negative versus gram‐positive activity were also seen in a second peptide system. Structural improvements resulted in a peptide that was more active than the native against gram‐positive bacterium but less active against gram‐negative bacterium. Our results show that there is not always a correlation between improved hairpin‐structuring and activity. Other factors such as the type of bacteria being targeted as well as net positive charge can play a role in the potency of AMPs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The recombinant proteins with strong antimicrobial activity are known to be very difficult to express using bacterial expression system. Here, human β-defensin (DEFB) 1, DEFB2, and DEFB3 were successfully produced using a silkworm–baculovirus protein expression system. We have generated four baculoviruses for each DEFB protein to compare the effect of different peptide tags in secretion into silkworm larval hemolymph. Interestingly, the best performing peptide tags for the secretion were different among DEFBs: C-terminal GST-H8 tag for DEFB1, N-terminal H8 tag for DEFB2, and C-terminal H8 tag for DEFB3, respectively. In addition, the colony count assay demonstrated that the recombinant DEFB2 s showed antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, and Paenibacillus thiaminolyticus.  相似文献   

8.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The cytosolic innate immune molecule, NOD1, recognizes peptidoglycan (PG) delivered to epithelial cells via the Helicobacter pylori cag pathogenicity island (cagPAI), and has been implicated in host defence against cagPAI+H. pylori bacteria. To further clarify the role of NOD1 in host defence, we investigated NOD1‐dependent regulation of human β‐defensins (DEFBs) in two epithelial cell lines. Our findings identify that NOD1 activation, via either cagPAI+ bacteria or internalized PG, was required for DEFB4 and DEFB103 expression in HEK293 cells. To investigate cell type‐specific induction of DEFB4 and DEFB103, we generated stable NOD1‘knockdown’ (KD) and control AGS cells. Reporter gene assay and RT‐PCR analyses revealed that only DEFB4 was induced in an NOD1‐/cagPAI‐dependent fashion in AGS cells. Moreover, culture supernatants from AGS control, but not AGS NOD1 KD cells, stimulated with cagPAI+H. pylori, significantly reduced H. pylori bacterial numbers. siRNA studies confirmed that human β‐defensin 2 (hBD‐2), but not hBD‐3, contributes to the antimicrobial activity of AGS cell supernatants against H. pylori. This study demonstrates, for the first time, the involvement of NOD1 and hBD‐2 in direct killing of H. pylori bacteria by epithelial cells and confirms the importance of NOD1 in host defence mechanisms against cagPAI+H. pylori infection.  相似文献   

10.
β-Defensins are cationic, antimicrobial peptides that participate in antimicrobial defense as well as the regulation of innate and adaptive immunity. Human β-defensin 126 (DEFB126) is a multifunctional glycoprotein consisting of a conserved β-defensin core and a unique long glycosylated peptide tail. The long glycosylated peptide tail has been proven to be critical for efficient transport of sperm in the female reproductive tract, preventing their immune recognition, and efficient delivery of capacitated sperm to the site of fertilization. However, the functions of the conserved β-defensin core remain to be fully elucidated. In the present work, the conserved β-defensin core of the DEFB126 was expressed to explore its potential antimicrobial and anti-inflammatory activities. The DEFB126 core peptide exhibited both high potency for binding and neutralizing lipopolysaccharide (LPS) in vitro, and potent anti-inflammatory ability by down-regulating the mRNA expression of pro-inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in a murine macrophage cell line RAW264.7. The treatment with the DEFB126 core peptide also led to correspondingly decreased secretion of IL-6 and TNF-α. The blockade of LPS-induced p42/44 and p38 MAPK signal pathway might contribute to the anti-inflammation effects of the DEFB126 core peptide. Furthermore, fluorescence-labeled DEFB126 could enter RAW 264.7 cells and reduce the production of LPS-stimulated inflammatory factors, implying that DEFB126 might also participate in intracellular regulation beyond its direct LPS neutralization. In summary, our results demonstrate that the DEFB 126 core peptide has critical functions in parallel to its C-terminal tail by showing LPS-binding activity, anti-inflammatory effects and intracellular regulatory function.  相似文献   

11.
This study investigates whether the B chain of β‐bungarotoxin exerted antibacterial activity against Escherichia coli (Gram‐negative bacteria) and Staphylococcus aureus (Gram‐positive bacteria) via its membrane‐damaging activity. The B chain exhibited a growth inhibition effect on E. coli but did not show a bactericidal effect on S. aureus. The B‐chain bactericidal action on E. coli positively correlated with an increase in membrane permeability in the bacterial cells. Lipopolysaccharide (LPS) layer destabilization and lipoteichoic acid (LTA) biosynthesis inhibition in the cell wall increased the B‐chain bactericidal effect on E. coli and S. aureus. The B chain induced leakage and fusion in E. coli and S. aureus membrane‐mimicking liposomes. Compared with LPS, LTA notably suppressed the membrane‐damaging activity and fusogenicity of the B chain. The B chain showed similar binding affinity with LPS and LTA, whereas LPS and LTA binding differently induced B‐chain conformational change as evidenced by the circular dichroism spectra. Taken together, our data indicate that the antibacterial action of the B chain is related to its ability to induce membrane permeability and suggest that the LPS‐induced and LTA‐induced B‐chain conformational change differently affects the bactericidal action of the B chain. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Human β-defensin 3 (DEFB103) is a recently identified small cysteine-rich cationic peptide expressed ubiquitously upon local microbial invasion. A number of accumulating evidences indicate that this peptide is involved in many biological processes, including microbicidal activities, chemoattraction, and immunomodulation. In this article, we describe a novel approach through which we performed the expression and purification of the recombinant DEFB103 peptide in Escherichia coli (E. coli) based on the pTWIN1 expression system. This approach does not introduce any extra residues to the peptide product, and also eliminates the requirement of removing the fusion tag by exogenous proteases. A high yield of 112 mg of soluble fusion DEFB103 was obtained in 1 liter of Luria-Bertani (LB) medium. By one-step affinity chromatography and on-column, auto-cleavage of the fusion tag, the mature DEFB103 peptide was produced with a yield of 30 mg/L LB. The purified DEFB103 peptide demonstrated strong antimicrobial activities against E. coli, S. aureus and C. albicans, which were representatives of Gram-negative and Gram-positive bacteria and fungi, respectively. Using this novel approach, we have successfully expressed and purified several human defensins with significant bioactivities. Our work may be helpful for structural and functional studies of other human defensins, and also for the production of human defensins.  相似文献   

13.
Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI‐1‐18 from rice α‐amylase (AmyI‐1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI‐1‐18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI‐1‐18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI‐1‐18. In the present study, anti‐inflammatory (anti‐endotoxic) activities of five AmyI‐1‐18 analogs containing arginine or leucine substitutions were investigated. Two single arginine‐substituted and two single leucine‐substituted AmyI‐1‐18 analogs inhibited the production of LPS‐induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI‐1‐18. These data indicate that enhanced cationic and hydrophobic properties of AmyI‐1‐18 are associated with improved anti‐endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50) of the three AmyI‐1‐18 analogs (G12R, D15R, and E9L) were 0.11–0.13 μm , indicating higher anti‐endotoxic activity than that of AmyI‐1‐18 (IC50, 0.22 μm ), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI‐1‐18 analogs. In addition, AmyI‐1‐18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti‐inflammatory and LPS‐neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine‐substituted and leucine‐substituted AmyI‐1‐18 analogs with improved anti‐endotoxic and antimicrobial activities have clinical potential as dual‐function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
In keeping with recent efforts to generate compounds for antibiotic and microbicide development, we focused on the creation of non‐natural organo‐peptide hybrids of antimicrobial peptide amides (KLK(L)nKLK‐NH2) derived from sapecin B and a self‐assembling oligoglycine organo‐peptide bolaphile containing an ω‐amino fatty acid residue. The hybrid organo‐peptide bolaphiles with two cationic KLK tripeptide motifs linked with an ω‐amino acid residue (penta‐, octa‐ or undecamethylene chain) maintained the self‐assembling properties of the root oligoglycine bolaphile. Electron microscopy clearly revealed complex supramolecular architectures for both sapecin B‐derived peptides and the hybrid analogues. FT‐IR spectroscopy indicated that the supramolecular structures were composed primarily of β‐sheets. CD revealed that the hybrid bolaphiles did not share the same secondary structures as the sapecin B peptides in solution. However, although secondary structures of antimicrobial peptides are central in the activity, the organo‐peptide bolaphiles also retained the potent antimicrobial activity of the leader sapecin B‐derived peptide against both Gram‐positive and Gram‐negative bacteria. In general, the hybrids were more selective than the sapecin B peptides, as they displayed little or no appreciable haemolytic activity. The results obtained herald a new approach for the design of purpose‐built hybrid organo‐peptide bolaphiles. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The human beta defensin 1 (hBD-1) antimicrobial peptide is a member of the innate immune system known to act in the first line of defence against microorganisms, including viruses such as human papillomavirus (HPV). In this study, five functional polymorphisms (namely g-52G>A, g-44C>G and g-20G>A in the 5’UTR and c.*5G>A and c.*87A>G in the 3’UTR) in the DEFB1 gene encoding for hBD-1 were analysed to investigate the possible involvement of these genetic variants in susceptibility to HPV infection and in the development of HPV-associated lesions in a population of Brazilian women. The DEFB1 g-52G>A and c.*5G>A single-nucleotide polymorphisms (SNPs) and the GCAAA haplotype showed associations with HPV-negative status; in particular, the c.*5G>A SNP was significantly associated after multiple test corrections. These findings suggest a possible role for the constitutively expressed beta defensin-1 peptide as a natural defence against HPV in the genital tract mucosa.  相似文献   

16.
Protaetiamycine is an insect defensin, derived from the larvae of the beetle Protaetia brevitarsis. In our previous work, we designed 9‐mer peptide analogs of protaetiamycine, including 9Pbw2 (RLWLAIKRR‐NH2), 9Pbw3 (RLWLAIWRR‐NH2), and 9Pbw4 (RLWLAWKRR‐NH2). 9Pbw2 and 9Pbw4 showed high antimicrobial activity without cytotoxicity, while 9Pbw3 with higher hydrophobicity compared to 9Pbw2 and 9Pbw4 showed high cytotoxicity as well as high antimicrobial activity (Shin et al., J. Pept. Sci. 2009; 15: 559–568). In this study, we investigated the anti‐inflammatory activities of 9Pbw2, 9Pbw3, and 9Pbw4 by quantitation of NO production in LPS‐stimulated RAW264.7 cells. The results showed that only 9Pbw3 has strong inhibition of NO production, implying that Trp7 as well as optimum level of hydrophobicity may play key roles in the anti‐inflammatory activity of 9Pbw3. In order to design potent anti‐inflammatory peptide with lower cytotoxicity as well as high stability from cleavage by protease compared to 9Pbw3, we synthesized 9Pbw3‐D , the all‐D ‐amino acid analog of 9Pbw3. 9Pbw3‐D showed less cytotoxicity against RAW264.7 cells as well as considerably stronger inhibition of NO production and inflammation‐induced cytokine production in LPS‐stimulated RAW264.7 cells than 9Pbw3. 9Pbw3‐D inhibited the gene expression of inflammatory‐induced cytokine significantly more than 9Pbw3 and showed high resistance to proteolytic digestion. Binding of 9Pbw3‐D with LPS caused higher enhancement of the FITC fluorescence as a result of its stronger interaction with LPS compared to that of 9Pbw3 and this result is in good agreement with their anti‐inflammatory activities. 9Pbw3‐D with higher anti‐inflammatory activity as well as lower cytotoxicity against mammalian cell compared to 9Pbw3 can be a potent noncytotoxic antibiotic candidates. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

18.
Cissampelos sympodialis Eichler is well studied and investigated for its antiasthmatic properties, but there are no data in the literature describing antibacterial properties of alkaloids isolated from this botanical species. This work reports the isolation and characterization of phanostenine obtained from roots of C. sympodialis and describes for the first time its antimicrobial and antibiotic modulatory properties. Phanostenine was first isolated from Cissampelos sympodialis and its antibacterial activities were determined. Chemical structures of the alkaloid isolate were determined using spectroscopic and chemical analyses. Phanostenine was also tested for its antibacterial activity against standard strains and clinical isolates of Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentration (MIC) was determined in a microdilution assay and for the evaluation of antibiotic resistance‐modifying activity. MIC of the antibiotics was determined in the presence or absence of phanostenine at sub‐inhibitory concentrations. The evaluation of antibacterial activity by microdilution assay showed activity for all strains with better values against S. aureus ATCC 12692 and E. coli 27 (787.69 mm ). The evaluation of aminoglycoside antibiotic resistance‐modifying activity showed reduction in the MIC of the aminoglycosides (amikacin, gentamicin and neomycin) when associated with phanostenine, MIC reduction of antibiotics ranging from 21 % to 80 %. The data demonstrated that phanostenine possesses a relevant ability to modify the antibiotic activity in vitro. We can suggest that phanostenine presents itself as a promising tool as an adjuvant for novel antibiotics formulations against bacterial resistance.  相似文献   

19.
B lymphocytes express multiple TLRs that regulate their cytokine production. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG‐ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway.  相似文献   

20.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号