首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium modulation of mitochondrial inner membrane channel activity.   总被引:4,自引:0,他引:4  
Protocols were defined that enable patch-clamp studies of the approximately 107 pS voltage dependent channel and a class of activity we refer to as MCC (multiconductance channel) which is characterized by multiple levels and transitions as high as 1 to 1.5 nS. If free calcium was kept at 10(-7) M or lower during mitochondrial isolation, no activity was observed at low voltage (+/- 60 mV). If free calcium levels were higher, MCC activity was observed in about 96% of the patches. The observation of approximately 107 pS channel was enhanced from 2% to 68% of patches by washing isolated mitoplasts (mitochondria stripped of outer membrane) with EGTA. Increasing matrix calcium from 10(-9) to 10(-5) M decreased the probability of opening for the MCC and approximately 107 pS activities.  相似文献   

2.
The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary currents could be resolved only at negative voltages; at positive voltages patch recordings resembled whole-cell recordings. These multi-channel patches had a small but significant resting conductance that was strongly activated by depolarization. Patch current was highly K+ selective, with a PK/PNa ratio of 28. Patches containing single K+ channels were obtained by allowing the apical membrane to redistribute into the basolateral membrane with time. Two types of K+ channels were observed in isolation. Ca(2+)-dependent channels of large conductance (135-175 pS) were activated in cell-attached patches by strong depolarization, with a half-activation voltage of approximately -10 mV. An ATP-blocked K+ channel of 100 pS was activated in cell-attached patches by weak depolarization, with a half-activation voltage of approximately -47 mV. All apical K+ channels were blocked by the sour taste stimulus citric acid directly applied to outside-out and perfused cell-attached patches. The bitter stimulus quinine also blocked all channels when applied directly by altering channel gating to reduce the open probability. When quinine was applied extracellularly only to the membrane outside the patch pipette and also to inside-out patches, it produced a flickery block. Thus, sour and bitter taste stimuli appear to block the same apical K+ channels via different mechanisms to produce depolarizing receptor potentials.  相似文献   

3.
The effect of amphiphilic cationic drugs on the channel activity of the mitochondrial inner membrane was examined with patch-clamp techniques. The therapeutic drugs amiodarone, propranolol and quinine reduced the probability of being open for the multiconductance channel (MCC) activity (levels from 30 pS to over 1 nS). While amiodarone decreased the probability of being open for the voltage dependent approximately 100 pS channel, it increased the conductance 42 +/- 20% (mean +/- SD, n = 6) with no significant change in mean open time. Similar results were obtained with propranolol. These data indicate that the approximately 100 pS channel is distinct from MCC activity.  相似文献   

4.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

5.
The behavior of the mitochondrial inner membrane multiple conductance channel (MCC) which has a peak conductance of 1-1.5 nS has been examined in rat heart mitochondria. MCC can display several unique characteristics: (a) prolonged open and closed times on the order of seconds to minutes, (b) a voltage dependence in which MCC opens (negative potential) or closes (positive potential) generally in steps, (c) a response to inhibitors such as amiodarone in steps corresponding at least approximately to those in (b), (d) a 'free-running mode' in which the current level rapidly fluctuates between a minimum of nine conductance levels but with a preferred occupation of the 0.5-0.7 nS levels, and (e) very large transitions (1-1.5 nS) resolved at 4 kHz bandwidth as single events with variable mean open time.  相似文献   

6.
Single potassium channels in the membrane of human malignant glioma cells U-118MG were studied using the technique of patch clamp in cell-attached and inside-out configurations. Three types of potassium channels were found which differed from each other under conditions close to physiological in their conductance and gating characteristics. The lowest-conductance channel (20 pS near the reversal potential) showed a mild outward rectification up to 45 pS at positive voltages and spontaneous modes of high and low activity. At extreme values of potentials its activity was generally low. The intermediate conductance channel had an S-shaped I-V curve, giving a conductance of 63 pS at reversal, and a low and voltage independent opening probability. The high-conductance (215 pS) channel was found to be activated by both membrane potential and Ca2+ ions and blocked by internal sodium at high voltages. The current-voltage curves of all three channel types displayed saturation.  相似文献   

7.
Permeabilization of biological membranes by pulsed electric fields ("electroporation") is frequently used as a tool in biotechnology. However, the electrical properties of cellular membranes at supra-physiological voltages are still a topic of intensive research efforts. Here, the patch clamp technique in the whole cell and the outside out configuration was employed to monitor current-voltage relations of protoplasts derived from the tobacco culture cell line "Bright yellow-2". Cells were exposed to a sequence of voltage pulses including supra-physiological voltages. A transition from a low-conductance (~0.1 nS/pF) to a high-conductance state (~5 nS/pF) was observed when the membrane was either hyperpolarized or depolarized beyond threshold values of around -250 to -300 mV and +200 to +250 mV, respectively. Current-voltage curves obtained with ramp protocols revealed that the electro-permeabilized membrane was 5-10 times more permeable to K+ than to gluconate. The K+ channel blocker tetraethylammonium (25 mM) did not affect currents elicited by 10 ms-pulses, suggesting that the electro-permeabilization was not caused by a non-physiological activation of K+ channels. Supra-physiological voltage pulses even reduced "regular" K+ channel activity, probably due to an increase of cytosolic Ca2+ that is known to inhibit outward-rectifying K+ channels in Bright yellow-2 cells. Our data are consistent with a reversible formation of aqueous membrane pores at supra-physiological voltages.  相似文献   

8.
Single sodium channel currents were analysed in cell attached patches from single ventricular cells of guinea pig hearts in the presence of a novel cardiotonic compound DPI 201-106. The mean single channel conductance of DPI-treated Na channels was not changed by DPI (20.8 +/- 4 pS, control, 3 patches; 21.3 +/- 1 pS with DPI, 5 mumol/1,3 patches). DPI voltage-dependently prolongs the cardiac sodium channel openings by removal of inactivation at potentials positive to -40 mV. At potentials negative to -40 mV a clustering of short openings at the very beginning of the depolarizing voltage steps can be observed causing a transient time course of the averaged currents. Long openings induced an extremely slow inactivation. Short openings, long openings and nulls appeared in groups referring to a modal gating behaviour of DPI-treated sodium channels. DPI-modified Na channels showed a monotonously prolonged mean open time with increased depolarizing voltage steps, e.g. the open state probability within a sweep was increased. However, the number of non-empty sweeps was decreased with the magnitude of the depolarizing steps, e.g. the probability of the channel being open as calculated from the averaged currents was voltage-dependently decreased by DPI (50% decrease at -50.7 +/- 9 9 mV, 3 patches). Short and long openings of DPI-modified channels could be separated by variation of the holding potential. The occurrence of long Na channel openings was much more suppressed by reducing the holding potential (half maximum inactivation at -112 +/- 8 mV, 4 patches) than that of short openings (half maximum inactivation at -88 +/- 8 mV, 4 patches). Otherwise, short living openings completely disappeared at potentials positive to -40 mV where the occurrence of long openings was favoured. The differential voltage dependence of blocking and activating effects of DPI on cardiac Na channels as well as the differential voltage dependence of the appearance of short and long openings refers to a modal gating behaviour of cardiac Na channels.  相似文献   

9.
Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attached-patch measurements revealed two types of high conductance (100-250 pS) channels, which rapidly activated upon 50-100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3 mM) or high K+ (143 mM) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20-200 msec (depending on the stimulus) upon depolarizing voltage steps from less than -60 mV to greater than -30 mV. It inactivates almost completely with a time constant of 2-3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1-2 sec) followed by a slow phase (greater than 20 sec). The second whole-cell conductance activates at positive membrane potentials of greater than +50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl- or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

10.
Nonselective cation channels were found in single channel recordings from cell-attached patches on human T lymphocytes. These channels were active under conditions that should lead to cell swelling (hypotonic bath solutions with NaCl or KCl); however, a definite dependence of activity on cell swelling has not been proven. Under these conditions similar channels were found in 20 of 23 patches from 11 different blood donors. The current-voltage relation was approximately linear for outward current (11-14 pS) and inwardly rectifying (to 23 pS) when the intact cells were depolarized with high KCl in the bath. The voltage dependence of channel activity is consistent with closing at hyperpolarized membrane potentials (Vm less than or equal to -50 mV) and block of open channels at strongly depolarized membrane potentials (Vm greater than 0 mV). Reversal potentials under all ionic gradients tested are consistent with a channel that is poorly selective between Na+ and K+ ions. Active channels in cell-attached patches were rapidly blocked by bath addition of the membrane-permeant inhibitor quinine. Channels that were active in cell-attached became quiescent after patch excision; however, two patches remained active long enough to obtain current-voltage relations. These were linear with a slope conductance for outward current of 8-11 pS. Because of the clustering of single-channel openings, detailed voltage dependence of kinetics and probability of opening were not studied.  相似文献   

11.
In this study we investigated the interaction of salmon and human calcitonin (Ct) with artificial lipid bilayer membranes. Both peptides were able to form either transient or permanent channels in the model membranes. The channels formed by salmon Ct at concentration (125 nM) had, on average, a single-channel conductance of 0.58 +/- 0.04 nS in 1M KCl (+10 mV), which is voltage-dependent at lower voltages. Human Ct forms at the same concentration channels with a much lower probability, and high voltages of up to +150 mV were needed to initiate channel formation. The estimated single-channel conductance formed under these conditions was approximately 0.0119 +/- 0.0003 nS in 1 M KCl. Both salmon and human Ct channels were found to be permeable to calcium ions. The possibility is discussed that the superior therapeutic effect of salmon Ct as a tool to treat bone disorders, including Paget disease, osteoporosis, and hypercalcemia of malignancy, rather than human Ct is related to the lack of the fibrillating property of salmon Ct. Preliminary data indicate that also eel and porcine Ct and carbocalcitonin form channels in model membranes.  相似文献   

12.
S Eriksen  S Olsnes  K Sandvig    O Sand 《The EMBO journal》1994,13(19):4433-4439
Receptor-dependent translocation of diphtheria toxin across the surface membrane of Vero cells was studied using patch clamp techniques. Translocation was induced by exposing cells with surface-bound toxin to low pH. Whole cell current and voltage clamp recordings showed that toxin translocation was associated with membrane depolarization and increased membrane conductance. The conductance increase was voltage independent, with a reversal potential of approximately 15 mV. This value was unaffected by changing the Cl- gradient across the membrane and microfluorometric measurements showed that the cytosolic Ca2+ concentration was only marginally elevated by the translocation. The conductance increase is thus mainly due to monovalent cations. Exposing outside-out and cell-attached patches with bound toxin to low pH induced a new type of ion channel in the membrane. The channel current was inward at negative membrane potentials and the single channel conductance was approximately 30 pS. This value is about three times larger than for receptor-independent channels induced by diphtheria toxin or toxin fragments in artificial lipid membranes.  相似文献   

13.
Using the lipid bilayer technique we have optimized recording conditions and confirmed that alpha human atrial natriuretic peptide [alpha-hANP(1-28)] forms single ion channels. The single channel currents recorded in 250/50 mM KCl cis/trans chambers show that the ANP-formed channels were heterogeneous, and differed in their conductance, kinetic, and pharmacological properties. The ANP-formed single channels were grouped as: (i) H202- and Ba2+-sensitive channel with fast kinetics; the nonlinear current-voltage (I-V) relationship of this channel had a reversal potential (Erev) of -28.2 mV, which is close to the equilibrium potential for K+ (EK = -35 mV) and a maximal slope conductance (gmax) of 68 pS at positive potentials. Sequential ionic substitution (KCl, K gluconate and choline Cl) of the cis solution suggests that the current was carried by cations. The fast channel had three modes (spike mode, burst mode, and open mode) that differed in their kinetics but not in their conductance properties. (ii) A large conductance channel possessing several subconductance levels that showed time-dependent inactivation at positive and negative membrane potentials (Vm). The inactivation ratio of the current at the end of the voltage step (Iss) to the initial current (Ii) activated immediately after the voltage step, (Iss/Ii), was voltage dependent and described by a bell-shaped curve. The maximal current-voltage (I-V) relationship of this channel, which had an Erev of +17.2 mV, was nonlinear and the value of gmax was 273 pS at negative voltages. (iii) A transiently-activated channel: the nonlinear I-V relationship of this channel had an Erev of -29.8 mV and the value of gmax was 160 pS at positive voltages. We propose that the voltage-dependence of the ionic currents and the kinetic parameters of these channel types indicate that if they were formed in vivo and activated by cytosolic factors they could change the membrane potential and the electrolyte homeostasis of the cell.  相似文献   

14.
Mitochondrial membranes isolated from a rat heart muscle were incorporated into a bilayer lipid membrane (BLM) and channel currents were measured in 250/50 mmol/l KCl cis/trans solutions. The channel currents measured from -40 to +40 mV had various linear voltage-current relationships and K(+)/Cl(-) permeability ratios at distinct voltage ranges. The channels possessed K(+)-Cl(-) promiscuous property. Depending on voltage, membrane permeability suddenly switched from K(+) over Cl(-) to Cl(-) over K(+) and back. The channels had Cl(-)/K(+) > 1 permeability at potentials around 0 mV and the permeability was switched to K(+)/Cl(-) > 1 at more negative and positive potentials. The chloride channel blocker, 5-nitro-2-(phenylpropylamino)-benzoate (NPPB, 5 x 10(-5) mol/l), influenced properties of the promiscuous channels - it activated potassium conductance of the channels.  相似文献   

15.
Yeast mitoplasts (mitochondria with the outer membrane stripped away) exhibit multiple conductance channel activity (MCC) in patch-clamp experiments that is very similar to the activity previously described in mammalian mitoplasts. The possible involvement of the voltage-dependent anion-selective channel (VDAC) of the outer membrane in MCC activity was explored by comparing the channel activity in wild-type yeast mitoplasts with that of a VDAC-deletion mutant. The channel activity recorded from the mutant is essentially the same as that of the wild-type in the voltage range of -40 to 30 mV. These observations indicate that VDAC is not required for MCC activity. Interestingly, the channel activity of the VDAC-less yeast mitoplasts exhibits altered gating properties at transmembrane potentials above and below this range. We conclude that the deletion of VDAC somehow results in a modification of MCC's voltage dependence. In fact, the voltage profile recorded from the VDAC-less mutant resembles that of VDAC.  相似文献   

16.
Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae.   总被引:4,自引:0,他引:4  
Ion channels in both the tonoplast and the plasma membrane of Saccharomyces cerevisiae have been characterized at the single channel level by patch-clamp techniques. The predominant tonoplast channel is cation selective, has an open-channel conductance of 120 pS in 100 mM KCl, and conducts Na+ or K+ equally well, and Ca2+ to a lesser extent. Its open probability (Po) is voltage-dependent, peaking at about -80 mV (cytoplasm negative), and falling to near zero at +80 mV. Elevated cytoplasmic Ca2+, alkaline cytoplasmic pH, and reducing agents activate the channel. The predominant plasma membrane channel is highly selective for K+ over anions and other cations, and shows strong outward rectification of the time-averaged current-voltage curves in cell-attached experiments. In isolated inside-out patches with micromolar cytoplasmic Ca2+, this channel is activated by positive going membrane voltages: mean Po is zero at negative membrane voltages and near unity at 100 mV. At moderate positive membrane voltages (20-40 mV), elevating cytoplasmic Ca2+ activates the channel to open in bursts of several hundred milliseconds duration. At higher positive membrane voltages, however, elevating cytoplasmic Ca2+ blocks the channel in a voltage-dependent fashion for periods of 2-3 ms. The frequency of these blocking events depends on cytoplasmic Ca2+ and membrane voltage according to second-order kinetics. Alternative cations, such as Mg2+ or Na+, block the yeast plasma-membrane K+ channel in a similar but less pronounced manner.  相似文献   

17.
Double whole-cell patch-clamp methods were used to characterize Junctional membrane conductances in epidermal cell pairs isolated from the prepupal integument of the flour beetle, Tenebrio molitor. The mean initial Junctional conductance in 267 cell pairs was 9.5 ± 1.0 nS (range 0–95 nS). Well-coupled cell pairs uncoupled spontaneously with a half-time of 7.6 min. Adding 5 mM ATP to the pipette solution stabilized coupling with less than a 50% drop occurring after 30 min. Nonjunctional membrane potential was the major determinant of Junctional conductance with transjunctional potential playing a minor role. Junctional conductance approached 0 pA at nonjunctional membrane potentials greater than 0 mV and increased with hyperpolarization. The voltage at half-maximal conductance was –26 mV. The time course of the reversible changes in Junctional conductance were slow (30 sec) with time-dependent decay occurring faster and recovery occurring slower with increasing depolarization. Single gap Junctional channel activity was recorded in uncoupling cell pairs and in poorly coupled ATP-stabilized cell pairs. One main single channel conductance was observed in each cell pair. The mean single channel conductances from all cell pairs in this study ranged from 197–347 pS (mean 248 pS). Single channel conductance was linear over the ±60 mV transjunctional voltage range tested. A broad range of subconductance states of the main state representing 5% of the total open time of measurable main state events was observed. Single channel activity was strongly dependent on the nonjunctional membrane potential, increasing with hyperpolarization.We gratefully acknowledge the helpful advice of Dr. Stephen Sims. This work was supported by NSERC of Canada grant No. A6797 to S.C. D.C. was supported by an NSERC scholarship for part of this work.  相似文献   

18.
Vibrio harveyi is known to cause fatal vibriosis in marine animals. Here, an outer membrane protein from V. harveyi, namely, VhOmp, was isolated and functionally characterized in terms of pore-forming contact with artificial lipid membranes. The native VhOmp exists as a trimer of a molecular weight similar to that of the porin OmpF from Escherichia coli. Reconstitution of VhOmp into black lipid membranes demonstrated its ability to form ion channels. The average pore conductance of VhOmp was revealed to be about 0.9 and 2 nS in 0.2 and 1 M KCl, respectively. Within transmembrane potentials of ±100 mV, VhOmp pores behaved as ohmic conduits, and their conductance scaled linearly with voltage. Nonlinear plots of the pore conductance versus symmetrical salt concentrations at either side of the protein-incorporating membrane suggested the influence of interior channel functionalities on the passage of charged species. In the presence of Omp-specific polyclonal antibodies, the pore-forming property of VhOmp was modulated so that the usual step-like current increments were replaced by random transitory current fluctuations. VhOmp exhibited a strong biological activity by causing hemolysis of human red blood cells, indicating that VhOmp may act as a crucial determinant during bacterial infection to animal host cells.  相似文献   

19.
O Tour  H Parnas    I Parnas 《Biophysical journal》1998,74(4):1767-1778
We have studied the voltage sensitivity of glutamate receptors in outside-out patches taken from crayfish muscles. We found that single-channel conductance, measured directly at the single-channel level, increases as depolarization rises. At holding potentials from -90 mV to approximately 20 mV, the conductance is 109 pS. At holding potentials positive to 20 mV, the conductance is 213 pS. This increase in single-channel conductance was also observed in cell-attached patches. In addition, desensitization, rise time, and the dose-response curve were all affected by depolarization. To further clarify these multifaceted effects, we evaluated the kinetic properties of single-channel activity recorded from cell-attached patches in hyperpolarization (membrane potential around -75 mV) and depolarization (membrane potential approximately 105 mV). We found that the glutamate dissociation rate constant (k_) was affected most significantly by membrane potential; it declined 6.5-fold under depolarization. The rate constant of channel closing (k(c)) was also significantly affected; it declined 1.8-fold. The rate constant of channel opening (k(o)) declined only 1.2-fold. The possible physiological significance of the depolarization-mediated changes in the above rate constants is discussed.  相似文献   

20.
All mammalian gap junction channels are sensitive to the voltage difference imposed across the junctional membrane, and parameters of voltage sensitivity have been shown to vary according to the gap junction protein that is expressed. For connexin43, the major gap junction protein in the cardiovascular system, in the uterus, and between glial cells in brain, voltage clamp studies have shown that transjunctional voltages (Vj) exceeding +/- 50 mV reduce junctional conductance (gj). However, substantial gj remains at even very large Vj values; this residual voltage-insensitive conductance has been termed gmin. We have explored the mechanism underlying gmin using several cell types in which connexin43 is endogenously expressed as well as in communication-deficient hepatoma cells transfected with cDNA encoding human connexin43. For pairs of transfectants exhibiting series resistance-corrected maximal gj (gmax) values ranging from < 2 to > 90 nS, the ratio gmin/gmax was found to be relatively constant (about 0.4-0.5), indicating that the channels responsible for the voltage-sensitive and -insensitive components of gj are not independent. Single channel studies further revealed that different channel sizes comprise the voltage-sensitive and -insensitive components, and that the open times of the larger, more voltage-sensitive conductance events declined to values near zero at large voltages, despite the high gmin. We conclude that the voltage-insensitive component of gj is ascribable to a voltage-insensitive substate of connexin43 channels rather than to the presence of multiple types of channels in the junctional membrane. These studies thus demonstrate that for certain gap junction channels, closure in response to specific stimuli may be graded, rather than all-or-none.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号