首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified DNA polymerase III has two distinct exonuclease activities: one initiates hydrolsis at the 3 termini, and the other at the 5 termini of single-stranded DNA. Both exonucleases have the same relative mobility on polyacrylamide gels as the polymerase activity. Molecular identity of the three activities is further indicated by their comparative rates of thermal inactivation and their sensitivity to ionic strength. The 3-5 exonuclease activity hydrolyzes only single-standed DNA. The rate of hydrolysis is twice the optimal rate of polymerization. The products are 5-mononucleotides, but the 3-5 activity is unable to cleave free dinucleotides or the 5-terminal dinucleotide of a polydeoxynucleotide chain. The 3-5 activity will not degrade 3-phosphoryl-terminated oligonucleotides such as d(pTpTpTp). The 5-3 activity catalyzes the hydrolysis of single-stranded DNA at 1/15 the rate of the 3-5 exonuclease. The 5-3 exonuclease requires the presence of a 5 single-stranded terminus in order to initiate hydrolysis, but will thereafter proceed into a double-stranded region. Although the limit products found during hydrolysis of substrates designed to assay specifically the 5-3 activity are predominantly mono- and dinucleotides, these products probably arise from the subsequent hydrolysis of oligonucleotides by the 3-5 hydrolytic activity. This interpretation is supported by (a) the relatively greater activity of the 3-5 exonuclease, (b) the inability of the enzyme to degrade d(pTpTpTp), and (c) the release of the 5 terminus of a single-stranded DNA molecule as an oligonucleotide. The 5-3 exonuclease attacks ultraviolet-irradiated duplex DNA which has first been incised by the Micrococcus luteus endonuclease specific for thymine dimers in DNA.  相似文献   

2.
An endo-exonuclease (designated nuclease III) has been purified to near homogeneity from adult flies of Drosophila melanogaster. The enzyme degrades single- and double-stranded DNA and RNA. It has a sedimentation co-efficient of 3.1S and a strokes radius of 27A The native form of the purified enzyme appears to be a monomer of 33,600 dalton. It has a pH optimum of 7-8.5 and requires Mg2+ or Mn2+ but not Ca2+ or Co2+ for its activity. The enzyme activity on double-stranded DNA was inhibited 50% by 30 mM NaCl, while its activity on single-stranded DNA required 100 mM NaCl for 50% inhibition. Under the latter conditions, its activity on double-stranded DNA was inhibited approximately 98%. The enzyme degrades DNA to complete acid soluble products which are a mixture of mono- and oligonucleotides with 5'-P and 3'-OH termini. Supercoiled DNA was converted by the enzyme to nicked and subsequently to linear forms in a stepwise fashion under the condition in which the enzyme works optimally on single-stranded DNA. The amino acid composition and amino acid sequencing of tryptic peptides from purified nuclease III is also reported.  相似文献   

3.
Two enzyme activities which release nucleotides preferentially from the 5' termini of DNA were found in T4-infected Escherichia coli. Since no corresponding activities were found in uninfected cells, the activities appeared to be induced by T4. Both activities are capable of excising pyrimidine dimers from ultraviolet-irradiated DNA which has been treated with T4 endonuclease V. One of the activities , referred to as T4 exonuclease B, was purified 400-fold from an extract of T4v 1- infected cells. The enzyme initiates hydrolysis of DNA specifically at the 5' termini to yield products which are mainly oligonucleotides of varying length. The hydrolysis reaction proceeds in a limited manner. The enzyme shows optimal activity at pH 7.0 and absolutely requires Mg2+. The molecular weight of the enzyme , as estimated by gel filtration, is approximately 35,000. Another activity, referred to as T4 exonuclease C, was purified 240-fold from the extract. This activity also excises pyrimidine dimers from ultraviolet-irradiated, incised DNA and releases nucleotides at 5' termini. It has a pH optimum at 7.5 and requires Mg2+. The molecular weight of the enzyme is approximately 20,000.  相似文献   

4.
The vast majority of nuclease activity in yeast mitochondria is due to a single polypeptide with an apparent molecular weight of 38,000. The enzyme is located in the mitochondrial inner membrane and requires non-ionic detergents for solubilization and activity. A combination of heparin-agarose and Cibacron blue-agarose chromatography was employed to purify the nuclease to approximately 90% homogeneity. The purified enzyme shows multiple activities: 1) RNase activity on single-stranded, but not double-stranded RNA, 2) endonuclease activity on single- and double-stranded DNA, and 3) a 5'-exonuclease activity on double-stranded DNA. Digestion products with DNA contain 5'-phosphorylated termini. Antibody raised against an analogous enzyme purified from Neurospora crassa (Chow, T. Y. K., and Fraser, M. (1983) J. Biol. Chem. 258, 12010-12018) inhibits and immunoprecipitates the yeast enzyme. This antibody inhibits 90-95% of all nuclease activity present in solubilized mitochondria, indicating that the purified nuclease accounts for the bulk of mitochondrial nucleolytic activity. Analysis of a mutant strain in which the gene for the nuclease has been disrupted supports this conclusion and shows that all detectable DNase activity and most nonspecific RNase activity in the mitochondria is due to this single enzyme.  相似文献   

5.
Bacteriophage T5-induced DNA polymerase has an associated 3′→5′ exonuclease activity for which both single-stranded and duplex DNA serve as substrate (1). In this report, we demonstrate that hydrolysis of single-stranded DNA homopolymers (template) is inhibited in the presence of complementary (Watson-Crick sense) oligonucleotides (primer). Almost complete inhibition is observed at a primer/template ratio of ? 0.1. Formation of “H-bonded” primer-template complex seems to be necessary for the inhibition of template hydrolysis because (a) similar amounts of noncomplementary oligonucleotides have no detectable effect on the rate of template hydrolysis, and (b) complementary oligonucleotides lose their inhibitory potential at temperatures where the H-bonded primer-template complex is expected to be unstable. From our data, it appears that the inhibition of template hydrolysis in the presence of primer molecules is due to the preferential binding of the enzyme at the 3′-OH terminus of the primer in the primer-template complex.  相似文献   

6.
T Fujiyoshi  J Nakayama  M Anai 《Biochemistry》1982,21(17):4159-4164
The various catalytic activities of the ATP-dependent deoxyribonuclease (DNase) of Bacillus laterosporus have pH optima at 6.3 and 8.3. Although the pH profile of ATP-dependent DNase activity on duplex DNA is bell shaped with a maximum at about pH 8.3, ATP-dependent DNAse activity on single-stranded DNA has optima at pH 6.3 and 8.3. ATPase activities dependent on double-stranded and single-stranded DNA have a high bell-shaped peak with a maximum at pH 6.3 with a low and broad shoulder at about pH 8.3. ATP-independent DNase activity also has optima at pH 6.3 and 8.3. The ratio of the amount of ATP hydrolyzed per number of cleaved phosphodiester bonds in DNA increases with decrease in the pH value of the reaction. The ratios obtained at pH 8.3 and 6.3 were respectively about 3 and 22 with duplex DNA as substrate and 5 and 17 with single-stranded DNA as substrate. Formation of a single-stranded region of 15000-20000 nucleotides, which is linked to duplex DNA and about half of which has 3'-hydroxyl termini, was observed at about pH 6.3, but not at above pH 7.5. Furthermore, the optimum concentrations of divalent cations for the activity producing the single-stranded region and the activity hydrolyzing ATP were identical (3 mM Mn2+ or 5 mM Mg2+). Thus the two activities are closely related. These results indicate that the enzyme has two different modes of action on duplex DNA which are modulated by the pH.  相似文献   

7.
M Seki  T Enomoto  J Yanagisawa  F Hanaoka  M Ui 《Biochemistry》1988,27(5):1766-1771
The DNA helicase activity of DNA-dependent ATPase B purified from mouse FM3A cells [Seki, M., Enomoto, T., Hanaoka, F., & Yamada, M. (1987) Biochemistry 26, 2924-2928] has been further characterized. The helicase activity was assayed with partially duplex DNA substrates in which oligonucleotides to be released by the enzyme were radiolabeled. Oligonucleotides with or without phosphate at the 5' termini or with a deoxy- or dideoxyribose at the 3'-terminal nucleotides were displaced by this enzyme with essentially the same efficiency and with the same ATP (and dATP) and Mg2+ requirements. Thus, there was no strict structure requirement for both ends of duplex regions of substrates to be unwound by the enzyme. Shorter strands were released more readily than longer strands up to the length of 140 bases. The attachment of the enzyme to a single-stranded DNA region was a prerequisite for the neighboring duplex to be unwound; the enzyme-catalyzed unwinding was inhibited competitively by the coaddition of single-stranded DNAs which act as cofactors of the ATPase activity. Their activities as the inhibitor of helicase were well correlated with those as the cofactor of ATPase. The helicase B was found to migrate along single-stranded DNA in the 5' to 3' direction by the use of single strands with short duplex regions at both 3' and 5' ends as substrate. A possible role of this enzyme in DNA replication in mammalian cells is discussed.  相似文献   

8.
The DNase that is associated with a multiprotein form of HeLa cell DNA polymerase alpha (polymerase alpha 2) has two distinct exonuclease activities: the major activity initiates hydrolysis from the 3' terminus and the other from the 5' terminus of single-stranded DNA. The two exonuclease activities show identical rates of thermal inactivation and coincidental migration during chromatofocusing, glycerol gradient centrifugation, and nondenaturing polyacrylamide gel electrophoresis of the DNase. Moreover, the purified DNase shows a single protein band of Mr 69,000 following nondenaturing polyacrylamide and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 3'----5' exonuclease activity hydrolyzes only single-stranded DNA substrates and the products are 5' mononucleotides. This activity recognizes and excizes mismatched bases at the 3' terminus of double-stranded DNA substrates. The 3'----5' exonuclease does not hydrolyze 3' phosphoryl terminated single-stranded DNA substrates. The 5'----3' exonuclease activity also only hydrolyzes single-stranded DNA substrates. The rate of hydrolysis, however is only about 1/25th the rate of the 3'----5' exonuclease. This exonuclease activity requires a 5' single-stranded terminus in order to initiate hydrolysis and does not proceed into double-stranded regions. The products of hydrolysis by 5'----3' exonuclease are also 5' nucleoside monophosphates.  相似文献   

9.
An acid deoxyribonuclease has been purified from rat small intestinal mucosa by a procedure including ammonium sulfate fractionation, chromatographies on DEAE-cellulose, CM-cellulose and SE-Sephadex and finally isoelectric focusing. Polyacrylamide gel electrophoresis of the purified enzyme preparation showed one major and two minor bands, and the enzyme activity corresponded to one of the minor bands. The enzyme preparation was free of contaminating DNase I, DNase III, alkaline RNase, acid and alkaline phosphatases and nonspecific phosphodiesterase, but slight activities of DNase IV and acid RNase were detected. The enzyme did not require divalent cations for activity, had a pH optimum of 4.5 in 0.33 M sodium acetate buffer, and had an optimum temperature of 50 to 60 degrees C when assayed for 30 min. The rate of hydrolysis of native DNA was about 2.5-fold faster than that observed with denatured DNA. Its molecular weight was found to be 9.0 +/- 0.1. The enzyme catalyzes the endonucleolytic cleavage of native and denatured DNA, yielding oligonucleotides which have an average chain length of about 7, and which contain 3'-phosphoryl termini. The mode of action of the enzyme is double-strand scission.  相似文献   

10.
A deoxyribonuclease activity with specificity towards single-stranded DNA has been purified approximately four hundred-fold from KB cells, by chromatography on DEAE-cellulose, phosphocellulose and hydroxylapatite. The last step of the purification results in separation of the enzyme from a DNase activity which has been described previously (Wang, E.C., Furth, J.J. and Rose, J.A., (1978) Biochemistry 17: 544-549). The properties of the new DNase activity are significantly different from those of the enzymes which have previously been identified in these cells. The activity sediments at approximately 7.5S in a glycerol gradient. The DNase activity is optimal at pHs between 6.0 and 6.5. It cleaves DNA endonucleolytically and hydrolyzes single-stranded DNA at about 11 times the rate of double-stranded DNA and at twice the rate of Poly (dA). The activity is moderately sensitive to inhibition by N-ethylmaleimide and is inhibited 80% by 50 mM NaCl. It is stimulated twenty-fold by Mn++ at an optimal concentration of approximately 0.7 mM. It is stimulated by a lesser extent by Mg++, but not by Ca++.  相似文献   

11.
The deoxyribonuclease specified by the recB and recC genes of Escherichia coli (recBC DNase; exonuclease V) has been purified to near homogeneity by a new procedure. Although hydrolysis of even a single nucleotide from a duplex DNA molecule by the pure enzyme is absolutely dependent upon ATP, the extent of phosphodiester hydrolysis is strongly inhibited by ATP concentrations of 0.2 mm or greater, and the initial rate is unaffected. Under these conditions, the extent of DNA hydrolysis is proportional to enzyme concentration. In contrast, neither the rate nor the extent of hydrolysis of single-stranded DNA nor ATP is affected by high concentrations of ATP. The amount of large single-stranded polynucleotide generated by the action of the recBC DNase increases as the ATP concentration increases and, at 0.5 mM ATP, becomes equivalent to the amount of acid-soluble nucleotide formed. These findings suggest that high intracellular concentrations of ATP affect the mechanism of the recBC DNase so as to limit the extent of hydrolysis of duplex DNA, while at the same time favoring the formation of single-stranded regions within the duplex. Such regions may be essential intermediates in the recombination process.  相似文献   

12.
Nuclear DNase specific for single-stranded DNA was obtained from the rat brain. The enzyme was isolated from a soluble protein fraction of total cell nuclei using gel filtration and ion-exchange chromatography. Nuclear DNase is Mg2+-dependent exodeoxyribonuclease and hydrolyzes homological, heterological and synthetic substrate at the same rate. It is established that nucleoside-5'-monophosphates are the major product of native and synthetic polydeoxyribonucleotides hydrolysis. It is supposed that the enzyme participates in reparation of neuron DNA.  相似文献   

13.
The mechanism of the human placental DNase VII, described previously (Hollis, G. F., and Grossman, L. (1981) J. Biol. Chem. 256, 8074-8079) has been investigated in further detail. The enzyme initiates exonucleolytic hydrolysis from the 3'-end of DNA in a nonprocessive, or distributive, manner, regardless of whether the carbohydrate moiety associated with the 3'-terminal nucleotide contains H or OH at its 2' and 3' positions. DNase VII does not have associated RNase H activity; however, it is capable of removing 3'-terminal ribonucleotides. The enzyme also can hydrolyze DNA containing a terminal nucleotide lacking a purine or pyrimidine as well as termini containing noncomplementary nucleotides. DNase VII activity is product-inhibited by deoxynucleoside 5'-monophosphates. From kinetic studies, the mononucleotide deoxyadenylic acid is a noncompetitive inhibitor with a Ki = 0.3 mM. The resemblance of DNase VII to the 3'----5' exonuclease activity of Escherichia coli DNA polymerase I and its possible role in excision repair and proofreading are discussed.  相似文献   

14.
A homogeneous preparation of venom phosphodiesterase from Crotalus adamanteus possesses an intrinsic endonuclease activity, specific for superhelical (form I) and single-stranded DNA. The phosphodiesterase degrades single-stranded T7 DNA by endonucleolytic cleavages. Duplex T7 DNA is hydrolyzed by the liberation of acid-soluble products simultaneously from the 3' and 5' termini but without demonstrable internal scissions in duplex regions. Since venom phosphodiesterase is known to hydrolyze oligonucleotides stepwise from the 3' termini, the cleavage at the 5' end of duplex T7 DNA is ascribed to an endonuclease activity. Form I PM2 DNA is nicked to yield first relaxed circles and then linear DNA which is subsequently hydrolyzed only from the chain termini. The linear duplex DNA intermediates consist of a discrete series of fragments (11 are usually resolved on agarose gels) with initial molecular weights ranging from 6.3 x 10(6) (the intact PM2 DNA size) to approximately 1 x 10(6). The cleavage of the form I molecule must, therefore, occur at a limited number of unique sites. The enzyme also cleaves nonsuperhelical, covalently closed circular PM2 DNA but at a 10(4) times slower rate. Both the endonuclease activity on form I DNA and the known exonuclease activity co-migrate on polyacrtkanude gels, are optimally active at pH 9, are stimulated by small concentrations of Mg2+, and are similarly inactivated by heat, reducing agents, and EDTA.  相似文献   

15.
An endonuclease activity has been purified approximately 800-fold from nuclei of 3T3 cells infected with polyoma virus. The purfied enzyme catalyzes an endonucleoytic cleavage of single- and double-stranded DNA and single-stranded RNA. Evidence that the activity towards these substrates resides in the same protein molecule is provided by the finding that they co-sediment in sucrose gradients and have identical rates of heat inactivation. Studies on the DNase activity shows that the rate of hydrolysis of single-stranded T7 DNA is 100-fold greater than that for double-stranded T7 DNA. Single-stranded DNA is extensively hydrolyzed to low molecular weight acid-insoluble products. With duplex DNA as substrate, only a limited number of single strand breaks are introduced. A limit digest with polyoma DNA (component I) as substrate results in the introduction of four breaks per strand. The phosphdiester bond interruptions can be repaired by polynucleotide ligase. Approximately 80% of the 5' termini present at the point of phosphodiester bond cleavage are purine nucleotides. Additional studies have demonstrated that a similar endonuclease is present in nuclei of uninfected cells and that this enzyme purified 400-fold has catalytic properties identical with those of the endonuclease from infected cells.  相似文献   

16.
An exonuclease, DNase B, was isolated from Bacillus subtilis Marburg strain. Molecular weight of DNase B was estimated to be 200,000 by glycerol gradient centrifugation, however, 56,000 by SDS-polyacrylamide gel electrophoresis. This result would indicate a possibility that the enzyme consisted of an identical subunit. The enzyme was specific for single-stranded DNA, required Mg2+ or Mn2+ (5 mm) for the maximal activity, but 40% of the activity was retained in the absence of divalent cations. The enzyme was active even in the presence of EDTA. The enzyme degraded single-stranded DNA exonucleolytically, producing oligonucleotides in the direction from the 5′-end to the 3′-end.  相似文献   

17.
Human pancreatic DNase I was purified extensively from duodenal juice of healthy subjects by a procedure including ammonium sulfate fractionation, ethanol fractionation, phosphocellulose fractionation, isoelectric focusing, and gel filtration. The final preparation was free of DNase II, pancreatic RNase, alkaline phosphatase, and protease. The enzyme had a molecular weight of approximately 30,000, as determined by gel filtration on Sephadex G-100, and showed maximum activity at pH 7.2-7.6. It required divalent cations for activity, and caused single-strand breaks by endonucleolytic attack on double- as well as single-stranded DNA molecules. The enzyme was inhibited by actin and bovine pancreatic DNase I antibody.  相似文献   

18.
N A Berger  S J Petzold 《Biochemistry》1985,24(16):4352-4355
Poly(ADP-ribose) polymerase requires DNA as an essential enzyme activator. Using enzyme purified from lamb thymus and double-stranded deoxynucleotide oligomers of defined length, we conducted studies to identify the smallest size DNA fragment capable of successfully activating poly(ADP-ribose) polymerase. These studies revealed that a double-stranded hexadeoxynucleotide activated the enzyme 30% as effectively as highly polymerized calf thymus DNA and a double-stranded octadeoxynucleotide activated the enzyme even more effectively than calf thymus DNA. When histone H1 was also included in the reaction system, the enzyme could be activated by even smaller DNA fragments. Thus, in the presence of histone H1, a double-stranded tetradeoxynucleotide activated the enzyme 25% as effectively as calf thymus DNA, and a double-stranded hexadeoxynucleotide was equally as effective as calf thymus DNA. The time courses for activation and the stabilities of the products were identical when the enzyme was activated by a double-stranded hexadeoxynucleotide or by calf thymus DNA. Double-stranded oligodeoxynucleotides containing dephosphorylated termini were more effective activators than those containing 3'-phosphorylated termini which in turn were more effective than those containing 5'-phosphorylated termini.  相似文献   

19.
In Anacystis nidulans the ribonuclease (RNase) activity is very low but is greatly increased upon phage-infection. A RNase was isolated and purified over 300-fold from A. nidulans cells infected by cyanophage AS-1. The enzyme did not attack single- or double-stranded DNA, was inactive on p-nitrophenyl phosphate or bis-p-nitrophenyl phosphate as substrates, and had neither 3′- nor 5′-nucleotidase activity. The approximate MW of the enzyme was 12000. Maximal enzyme activity was at pH 7.5. No absolute requirement for metal ions was observed, but Fe3+ stimulated and Co2+ and Ni2+ inhibited enzyme activity. The enzyme is an endonuclease which, upon exhaustive hydrolysis, produces mainly oligonucleotides (average chain-length: 3) with 3′-P termini. Analysis of the base composition of these oligonucleotides and determination of their 3′-terminal nucleosides, together with the investigation of the rate of hydrolysis of synthetic polyribonucleotides, have shown that the enzyme has a relative specificity for uridylic acid.  相似文献   

20.
The adenovirus-specific DNA-binding protein (DBP) has been shown to inhibit the hydrolysis of single-stranded DNA by a DNase isolated from KB cells, (Nass, K., and Frenkel, G.D. (1980). J. Virol. 35, 314–319). The specificity of the inhibition has now been investigated. The DBP inhibits the hydrolysis of single-stranded DNA by several different DNases (DNase II, KB DNase, S1 nuclease) under a variety of reaction conditions, but it has no effect on DNase I-catalyzed hydrolysis of single-stranded DNA. The DBP also inhibits the rate of hydrolysis of double-stranded DNA by KB DNase and DNase II, but has no effect on DNase I-catalyzed hydrolysis of this substrate. The DBP also inhibits the dephosphorylation of 5′-phosphoryl-terminated DNA by bacterial alkaline phosphatase but stimulates the phosphorylation of 5′-hydroxyl-terminated DNA by polynucleotide kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号