首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A library of polyurethanes and polyureas with different hydrophobicities containing the same acid-degradable dimethyl ketal moiety embedded in the polymer main chain have been prepared. All polymers were synthesized using an AA-BB type step-growth polymerization by reaction of bis(p-nitrophenyl carbamate/carbonate) or diisocyanate monomers with an acid-degradable, ketal-containing diamine. These polymers were designed to hydrolyze at different rates in mildly acidic conditions as a function of their hydrophobicity to afford small molecules only with no polymeric byproduct. The library of polymers was screened for the formation of microparticles using a double emulsion technique. The microparticles that were obtained degraded significantly faster at acidic pH (5.0) than at physiological pH (7.4) with degradation kinetics related to the hydrophobicity of the starting polymer. In vitro studies demonstrated the ability of the FITC-BSA loaded microparticles to be phagocytosed by macrophages resulting in a 10-fold increase in the protein uptake compared to a free protein control; in addition, the microparticles were found to be nontoxic at the concentrations tested of up to 1 mg/mL. The ease of preparation of the polymers coupled with the ability to tune their hydrophobicity and the high acid sensitivity of the microparticles identify this new class of materials as promising candidates for the delivery of bioactive materials.  相似文献   

2.
Acute inflammatory diseases are a major cause of death in the world, and effective treatments are greatly needed. Macrophages play a central role in causing acute inflammatory diseases, and there is currently great interest in developing drug delivery vehicles that can target therapeutics to macrophages. Microparticles formulated from aliphatic polyketals have great potential to enhance the treatment of acute inflammatory diseases, due to their ability to passively target therapeutics to macrophages, their acid sensitivity, and their biocompatible degradation products. However, existing aliphatic polyketals are unsuitable for treating acute inflammatory diseases because they require weeks to hydrolyze, and strategies for accelerating their hydrolysis kinetics are greatly needed. In this report, we demonstrate that the hydrolysis kinetics of aliphatic polyketals can be accelerated by increasing their hydrophilic/hydrophobic balance. Aliphatic polyketals of varying hydrophobicity were synthesized, via the acetal exchange reaction, and their hydrolysis kinetics were investigated at the pH values of 4.5 and 7.4. A polyketal termed PK3 was developed, which had the hydrolysis kinetics suitable for treating acute inflammatory diseases. PK3 has a hydrolysis half-life of 2 days at pH 4.5, but requires several weeks to hydrolyze at pH 7.4. Microparticles were formulated with PK3, which encapsulated the anti-inflammatory drug, imatinib. In vivo experiments demonstrated that PK3 microparticles were able to significantly improve the efficacy of imatinib in treating acute liver failure. We anticipate that aliphatic polyketals will have numerous applications for the treatment of acute inflammatory diseases, given their pH sensitivity, tunable hydrolysis kinetics, and biocompatible degradation products.  相似文献   

3.
Two types of acid-degradable nonviral gene carriers, OEI-MK and OEI-BAA, were synthesized by polymerizing oligoethylenimine of 800 Da (OEI800) with the pH-sensitive acetone ketal cross-linker 2,2-bis(N-maleimidoethyloxy) propane (MK) or the 4-methoxybenzaldehyde bisacrylate acetal cross-linker 1,1-bis-(2-acryloyloxy ethoxy)-[4-methoxy-phenyl]methane) (BAA). Corresponding acid-insensitive counterparts (OEI-BM and LT-OEI-HD) were synthesized as well, representing control polymers. Kinetics of hydrolysis were measured and confirmed the pH-dependent degradation profile of the acetal functions, with short half-lives of 3 min at pH 5.0, and 5 h (OEI-MK) or 3.5 h (OEI-BAA) at physiological pH 7.4 and 37 degrees C. DNA polyplexes of a luciferase expression plasmid were tested for gene transfer efficiency and biocompatibility in two cell lines (B16F10 and Neuro2A). Polyplexes with acid-labile polymers showed an improved toxicity profile compared to those made with acid-stable polymer analogues. At low cation/plasmid (c/p) w/w ratios the transfection efficiency of pH-sensitive polymers was slightly reduced, but it became similar or superior to the efficiency of acid-stable polymers at higher c/p ratios. An improved in vivo biocompatibility of the acid-degradable polymers over the stable control polymers was confirmed by liver histology after systemic administration of polymers in Balb/c mice.  相似文献   

4.
Alginate, polygalacturonate, and methylcellulose (polyacetals), and polyethylene oxide (polyether) rapidly lost viscosity in periodate solution. Three other polymers, namely DNA, polyacrylate, and gelatine, which are not polyethers or polyacetals, were almost unaffected in similar conditions. A mechanism is proposed, based on a known disproportionation of ether-type free-radicals, which is induced by hydroxyl radicals in periodate solution. Scission of the polymer chain could occur solely by ether-type disproportionation, or by glycol cleavage following ring opening caused by disproportionation involving the ring oxygen atom. The susceptibility of glycuronans to periodate degradation might, in part, be due to the known ease of formation of free radicals from α-hydroxy acids by abstraction of H-5, followed by ring opening and glycol fission by periodate. The relevance of these findings and interpretations to other free-radical-induced degradations of polysaccharides is discussed.  相似文献   

5.
We have designed and evaluated biodegradable porous polymeric microparticles as a scaffold for cell growth. The hypothesis was that microparticles with optimized composition and properties would have better cell adhesion and hence cell growth into a tissue-like structure. Solvent-evaporation method was modified using sucrose as an additive to form large porous microparticles of poly(D,L-lactic-co-glycolic) (PLGA) and polylactide (PLA) polymers. Microparticles containing hydrophilic polymers (poly(vinyl alcohol) and chitosan) incorporated in their internal matrix structure were also formulated. Different formulations of microparticles were evaluated for physical properties, cell adhesion, and cell growth in culture. PLA microparticles containing poly(vinyl alcohol) (PVA) in the matrix structure (PLA-PVA) and treated with serum prior to cell seeding demonstrated better cell adhesion and cell growth than other formulations of microparticles. Cells were seen to grow into clumps, engulfing microparticles completely with time, and forming a 3-D tissue-like structure. Cell density of 1.5 x 10(6) cells per mg of microparticles was achieved in 9 days of culture, which was a 7-fold increase from the initial seeding cell density. The mechanism of better cell growth on PLA-PVA microparticles appears to be due to the PVA associated with the internal matrix structure of microparticles. These microparticles demonstrated better wetting in culture and also cell adhesion. In addition to tissue engineering applications, microparticles with cancer cells grown into a tissue-like structure in vitro can be potentially used as a model system for preclinical evaluation of the cytotoxic effect of anticancer agents.  相似文献   

6.
Microparticle powders for nasal delivery were formulated to contain the model drug, zolmitriptan, and varying proportions of different polymers. The objective of the study was to investigate the effects of these formulative parameters on the surface chemistry of the spray-dried microparticles and their potential for adhesion to the tested substrates, porcine mucin, and nasal tissue. The polymers used were chitosans of varying ionization states and molecular weights and hydroxypropyl methyl cellulose. The surface energies of the surfaces of the microparticles were determined using contact angle measurements and the van Oss model. The theory of surface thermodynamics was applied to determine the theoretical potential for the different materials to adhere to the substrates. It was found that the drug or polymers alone, as well as the various formulations, were more likely to adhere to mucin than to nasal tissue. Further, there was a trend for higher molecular weight chitosans to adhere better to the substrates than lower molecular weight chitosans. Similarly, adhesion was improved for formulations with a higher content of polymers. These theoretical predictions may be compared with further experimental results and be of use in making informed decisions on the choice of formulations for future expensive bio-studies.  相似文献   

7.
There is currently great interest in developing microparticles that can enhance the delivery of proteins to macrophages. In this communication, we present a new acid-sensitive polymer for drug delivery, poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK). PCADK is designed to hydrolyze, after phagocytosis by macrophages, in the acidic environment of the phagosome and enhance the intracellular delivery of phagocytosed therapeutics. Other key attributes of PCADK for drug delivery are its well-characterized degradation products and straightforward synthesis. PCADK hydrolyzes into 1,4-cyclohexanedimethanol, a compound used in food packaging, and acetone, a compound on the FDA GRAS list. PCADK was synthesized using the acetal exchange reaction between 1,4-cyclohexanedimethanol and 2,2-dimethoxypropane, and could be obtained on a multigram scale in one step. The hydrolysis kinetics of the ketal linkages in PCADK were measured by 1H NMR and were determined to be pH-sensitive, having a half-life of 24.1 days at pH 4.5 and over 4 years at pH 7.4. The therapeutic enzyme superoxide dismutase (SOD), which scavenges reactive oxygen species, was encapsulated into PCADK-based microparticles using a double emulsion procedure. Cell culture experiments demonstrated that PCADK-based microparticles dramatically improved the ability of SOD to scavenge reactive oxygen species produced by macrophages. We anticipate numerous applications of PCADK in drug delivery, based on its acid sensitivity, well-characterized degradation products, and straightforward synthesis.  相似文献   

8.
Ornithine decarboxylase (ODC) is an enzyme that initiates polyamine synthesis in human. Polyamines play key roles in cell–cell adhesion, cell motility and cell cycle regulation. Higher synthesis of polyamines also occurs in rapidly proliferating cancer cells are mediated by ODC. As per earlier studies, di-flouro-methyl-orninthine (DFMO) is a proven efficient inhibitor ODC targeting the catalytic activity, however, its usage is limited due to side effects. Targeting ODC is considered as a potential therapeutic modality in the treatment of cancer. In this study, it is attempted to use DFMO scaffold to build a ligand-based pharmocophore query using MOE to screen similar active compounds from Universal Natural Products Database with better ADMET properties. The identified compounds were virtually screened against the active cavity of ODC using Glide. Further, potential natural hits targeting ODC were shortlisted based on Molecular Mechanics/Generalized-Born/Surface Area (MM-GBSA) score. Finally, molecular dynamics simulations were performed for the natural molecule hit and DFMO in complex with ODC using Desmond. Among the hits shortlisted, 2-amino-5, 9, 13, 17-tetramethyloctadeca-8, 16-diene-1, 3, 14-triol (UNPD208110) was found to be highly potential, as it showed a higher binding affinity in terms of interactions with key active cavity residues, and also showed better ADMET property, HUMO–LUMO gap energy and more stable complex formation with ODC compared to DFMO. Hence, the proposed molecule (UNPD208110) shall be favourably considered as a potential natural inhibitor targeting ODC-mediated disease conditions.  相似文献   

9.
李晓  李达  周雪松  赵勇 《生物信息学》2017,15(3):179-185
在药物研发早期阶段对化合物成药性和安全性进行评估,对于提高药物研发成功率、降低研发成本具有十分重要的意义。为了能够帮助药物研究工作者快速准确地判断候选化合物的成药性与安全性,开发了一个基于计算机方法的化合物ADMET性质预测平台。首先,通过文本挖掘的方法收集了化合物药代动力学性质和毒性(ADMET)的高质量实验数据。然后,根据原始文献复原了13个预测模型,同时采用支持向量机方法自建了15个具有较高预测能力的计算模型。最后,基于分布式架构,结合高性能计算集群优势,开发了化合物ADMET性质预测平台(http://www.vslead.com/?r=admet/index),用于预测28种重要的化合物ADMET性质。研究者可以使用这一平台快捷方便地对药物研究中比较重要的ADMET性质进行预测,在药物研发早期对候选化合物进行成药性评价和风险评估,有助于提高药物研的成功率,节省研发时间和经费的投入。  相似文献   

10.
The aim of our study was to identify biological factors responsible for premature loosening of polyacetal hip stems. The results of histological analyses of the tissue around 11 total hip prostheses with loosened polyacetal femoral stems were compared to those obtained in a group of 11 total hip prostheses with loosened metal (CoCr) femoral components. A higher number of polymer wear particles surrounded by giant cells, more bone chips, and a more extensive necrosis were found around loosened polyacetal stems. Histomorphological characteristics of polyacetal wear particles containing BaSO(4) granules in the tissue around loosened polyacetal stems were described. Radiological evaluation of the wear of polyethylene cups suggested that elastic modulus of the stem had no influence on the wear of polyethylene cups. This study indicates that polyacetal wear particles have a great biological potential accelerating the process of loosening.  相似文献   

11.
In this study, we investigated the in vitro characteristics of mefenamic acid (MA) microparticles as well as their effects on DNA damage. MA-loaded chitosan and alginate beads were prepared by the ionotropic gelation process. Microsponges containing MA and Eudragit RS 100 were prepared by quasi-emulsion solvent diffusion method. The microparticles were characterized in terms of particle size, surface morphology, encapsulation efficiency, and in vitro release profiles. Most of the formulation variables manifested an influence on the physical characteristics of the microparticles at varying degrees. We also studied the effects of MA, MA-loaded microparticles, and three different polymers on rat brain cortex DNA damage. Our results showed that DNA damage was higher in MA-loaded Eudragit microsponges than MA-loaded biodegradable chitosan or alginate microparticles.  相似文献   

12.
Oligonucleotide-loaded nanoparticles, which are of interest for biomedical application, up to now, could not be prepared by in-situ synthesis, due to difficulty of handling in automated synthesizers. To overcome this problem, we have introduced the "support-on-support" concept. It is based on the reversible anchoring of nanoparticles to the surface of microparticles. These composite beads easily can be used for automated synthesis, being released after completion of chain elongations. As examples, dextran-coated magnetite nanoparticles were attached to polystyrene microparticles through (1) a gelatine or (2) a silica layer. Release involved dissolution of the bonding layer by (1) proteases or (2) alkali.  相似文献   

13.
A glucose amperometric biosensor based on the immobilization of glucose oxidase (GOx) in microparticles prepared by polymerization of the ionic liquid 1-vinyl-3-ethyl-imidazolium bromide (ViEtIm+Br) using the concentrated emulsion polymerization method has been developed. The polymerization of the emulsion dispersed phase, in which the enzyme was dissolved together with the ionic liquid monomer, provides poly(ViEtIm+Br) microparticles with entrapped GOx. An anion-exchange reaction was carried out for synthesizing new microparticles of poly(ViEtIm+(CF3SO2)2N) and poly(ViEtIm+BF4). The enzyme immobilization method was optimized for biosensor applications and the following optimal values were determined: pH 4.0 for the synthesis medium, 1.23 M monomer concentration and 3.2% (w/w) cross-linking content. The performance of the biosensor as a function of some analytical parameters such as pH and temperature of the measuring medium, and enzymatic load of the microparticles was also investigated. The effect of the substances which are present in serum samples such as uric and ascorbic acid was eliminated by using a thin Nafion layer covering the electrode surface. The biosensor thus prepared can be employed in aqueous and in non-aqueous media with satisfactory results for glucose determination in human serum samples. The useful lifetime of this biosensor was 150 days.  相似文献   

14.
Direct rapid synthesis of MIP beads in SPE cartridges   总被引:1,自引:0,他引:1  
Selecting optimal compositions for non-covalent molecularly imprinted polymers (MIPs) and screening for appropriate rebinding conditions necessitates synthesising a large number of polymers. This is extremely labour-intensive and usually results in very limited "optimisation" in studies of MIPs. Here, a new method is proposed for rapid synthesis of MIPs in a beaded form that can be used directly in many different performance evaluation studies. The method is based on synthesis of spherical particles by suspension polymerisation in liquid fluorocarbon [Mayes, A., Mosbach, K., 1996. Molecularly imprinted polymer beads: suspension polymerisation using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 68, 3769-3774]. The polymers were directly polymerised under UV light in solid phase extraction (SPE) cartridges, then washed and extracted in the same cartridges where they had been synthesised, resulting in a rapid and automatable process that requires no transfer or manipulation of the polymer particles. The particles were similar in terms of size, morphology and functional performance to particles obtained by suspension polymerisation in fluorocarbon solvent using a conventional reactor. In this initial study, 36 polymers were synthesised to study the effect of a variation in the type and amount of four different functional monomers, methacrylic acid (MAA), acrylic acid (AA), hydroxyethyl methacrylate (HEMA) and 2-vinylpyridine (2-VPy), for the imprinting of propranolol and morphine. The performance of polymers synthesised using MAA was as expected, but those synthesised with AA as functional monomer showed more surprising rebinding properties as a function of monomer to cross-linker ratios, demonstrating the potential value of pragmatic synthesis and screening approaches to polymer optimisation.  相似文献   

15.
This study examined the application of previously characterized microparticles composed of hyaluronan (HA) and chitosan hydroglutamate (CH) as well as novel microparticles consisting of both polymers (HA/CH) to improve the nasal delivery of a model drug. The rabbit bioavailabilities of gentamicin incorporated in HA, CH, and HA/CH microparticles were increased 23-, 31-, and 42-fold, respectively, compared with the control intranasal solution of gentamicin, indicating that all test microparticles were retained for longer periods on the nasal mucosa of the rabbits as supported by previous in vitro dissolution as well as frog palate mucoadhesion studies, thereby improving drug absorption. The higher bioavailabilities of CH-based formulations (CH and HA/CH) suggest the penetration-enhancing effects of CH may also be partially responsible for the improvement. A model was developed, based on a glass impinger device, to deliver dry powder formulations reproducibly onto the surface of cultured cell monolayers. In vitro permeability and fluorescence microscopy studies on the tight junctions of the 16HBE14o- cell lines further confirmed the ability of CH-based formulations to enhance penetration. Furthermore, the in vitro absorption profile from cell culture studies was consistent with those determined from in vivo studies. The complementary effect from the mucoadhesive nature of HA coupled with the penetration-enhancing effects of CH makes the novel HA/CH formulation a promising nasal delivery system.  相似文献   

16.
The synthesis of glucose oxidase and catalase by Aspergillus niger was investigated using a resting cell culture system without growth being established. Calcium carbonate induced the synthesis of both enzymes and calcium chloride inhibited it. The optimal pH for the biosynthesis of glucose oxidase and catalase was 6.0 and 5.7, respectively. The effects of other bivalent cations, reductive compounds and metabolic products on enzyme synthesis were also tested. The biosynthesis of glucose oxidase and catalase was promoted by MnCO3, thioglycolic acid, pyroracemic acid and gluconic acid.  相似文献   

17.
There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.  相似文献   

18.
We described the design of uniform microencapsulates with almost 100% encapsulation efficiency, synthesized without organic solvents, via microfluidic spray drying of water-based dispersions of pH-responsive methacrylic acid polymers (Eudragit® L 30D-55). The effects of incorporating water-based network-forming materials in the formulations on pH-responsiveness and controlled release patterns of enteric microparticles were observed. Acid hydrolysed tetraethoxysilane (TEOS) was used to form an interpenetrating, rigid framework of silica, whereas Eudragit® NE (a copolymer based on ethyl acrylate and methyl methacrylate) was added to produce a more flexible polymeric network. The spray-dried microparticles generally displayed crumbled or buckled morphologies dependent on drying temperatures, due to large hydrodynamic sizes of solutes in feed dispersions. The drug release kinetics of microparticles were sensitive to the type and the added amount of network-forming materials, due to different colloidal interactions between Eudragit® L and either silica or the copolymer. This study demonstrated a strategy to design enteric microparticles with different microstructural properties and drug release behaviours through understanding of colloidal interactions between constituents of matrix materials.  相似文献   

19.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

20.
Lubinsky S  Bewley GC 《Genetics》1979,91(4):723-742
A screen for allelic variants of the enzyme catalase indicated that the Cat+ locus is essentially monomorphic in D. melanogaster. Segmental aneuploidy was used to screen the genome for a dosage-sensitive region for catalase activity. One region, 75D–78A on the polytene chromosome map of 3L, exhibited a hyperploid/euploid ratio of enzyme activity of 1.5. Further dissection localized the region to 75D–76A. We suggest that this region contains the structural locus for catalase in D. melanogaster.

Simple methods have been developed using the specific inhibitor, 3-amino-1,2,4-triazole, for the direct analysis of rates of synthesis and degradation of the Cat+ gene product. Based on kinetic studies of catalase synthesis in flies aneuploid and euploid for region 75D–76B, we suggest that these techniques can be readily applied to an examination of mutants that control the expression of the structural gene for catalase in Drosophila.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号