首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1,4-Benzoquinone, coenzyme Q 0 and Q 10 were reacted with a series of hydrogen donors in the ESR cavity in the presence or absence of UVA irradiation. The signals of the radicals generated from the hydrogen donors or of those of the semiquinones were detected. The reaction mechanism was interpreted by a hydrogen atom transfer instead of the usual electron transfer mechanism on the basis of the redox potentials of the reactants and the Marcus theory. The hydrogen atom transfer is explained by the excited triplet state of quinones, which, on the basis of quantum mechanic calculations, may be reached even under visible light. In some cases, hydrogen atom transfer was also observed without irradiation, although to a lesser extent.  相似文献   

2.
3.
Hydrogen bonds formed between photosynthetic reaction centers (RCs) and their cofactors were shown to affect the efficacy of electron transfer. The mechanism of such influence is determined by sensitivity of hydrogen bonds to electron density rearrangements, which alter hydrogen bonds potential energy surface. Quantum chemistry calculations were carried out on a system consisting of a primary quinone Q(A), non-heme Fe(2+) ion and neighboring residues(.) The primary quinone forms two hydrogen bonds with its environment, one of which was shown to be highly sensitive to the Q(A) state. In the case of the reduced primary quinone two stable hydrogen bond proton positions were shown to exist on [Q(A)-His(M219)] hydrogen bond line, while there is only one stable proton position in the case of the oxidized primary quinone. Taking into account this fact and also the ability of proton to transfer between potential energy wells along a hydrogen bond, theoretical study of temperature dependence of hydrogen bond polarization was carried out. Current theory was successfully applied to interpret dark P(+)/Q(A)(-) recombination rate temperature dependence.  相似文献   

4.
Ethanolamine ammonia-lyase catalyzes the adenosylcobalamin (AdoCbl)-dependent conversion of ethanolamine to acetaldehyde and ammonia. During this reaction, a hydrogen atom migrates from the carbinol carbon of ethanolamine to the methyl carbon of acetaldehyde. Previous studies have shown that this migrating hydrogen equilibrates with the hydrogens on the 5'-(cobalt-linked) carbon of the cofactor. On the basis of those studies, a two-step mechanism for hydrogen transfer has been postulated in which the migrating hydrogen is first transferred from the substrate to the cofactor, then in a subsequent step is returned from the cofactor to the product. We now show that this migrating hydrogen is transferred not only to the cofactor, but also to a second acceptor at the active site. Hydrogens on this acceptor do not exchange with water during the course of the reaction, but are released to water when the enzyme is denatured. The catalytic significance of this second hydrogen acceptor was demonstrated by the findings that the transfer of hydrogen to this acceptor required both AdoCbl and active enzyme and that hydrogen at the second acceptor site could be washed out by unlabeled ethanolamine. On the basis of these results, we propose an expanded hydrogen transfer mechanism in which AdoCbl and the second acceptor site serve as alternative intermediate hydrogen carriers during the course of ethanolamine deamination.  相似文献   

5.
Lipoxygenases are an important class of non-heme iron enzymes that catalyze the hydroperoxidation of unsaturated fatty acids. The details of the enzymatic mechanism of lipoxygenases are still not well understood. This study utilizes a combination of kinetic and structural probes to relate the lipoxygenase mechanism of action with structural modifications of the iron's second coordination sphere. The second coordination sphere consists of Gln(495) and Gln(697), which form a hydrogen bond network between the substrate cavity and the first coordination sphere (Asn(694)). In this investigation, we compared the kinetic and structural properties of four mutants (Q495E, Q495A, Q697N, and Q697E) with those of wild-type soybean lipoxygenase-1 and determined that changes in the second coordination sphere affected the enzymatic activity by hydrogen bond rearrangement and substrate positioning through interaction with Gln(495). The nature of the C-H bond cleavage event remained unchanged, which demonstrates that the mutations have not affected the mechanism of hydrogen atom tunneling. The unusual and dramatic inverse solvent isotope effect (SIE) observed for the Q697E mutant indicated that an Fe(III)-OH(-) is the active site base. A new transition state model for hydrogen atom abstraction is proposed.  相似文献   

6.
A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-57, a residue hypothesized to be proximate to the aryl group of the bound agonist and a putative hydrogen bonding partner. Q57K, Q57D, Q57E, and Q57L were chosen to remove the dual hydrogen bonding donor/acceptor ability of Gln-57 and replace it with hydrogen bond donating, hydrogen bond accepting, or nonhydrogen bonding ability. Activation of the receptor was compromised with hydrogen bonding mismatches, for example, pairing a pyrrole with Q57K or Q57L, or a furan anabaseine with Q57D or Q57E. Ligand co-applications with the positive allosteric modulator PNU-120596 produced significantly enhanced currents whose degree of enhancement was greater for 2-furans or -pyrroles than for their 3-substituted isomers, whereas the nonhydrogen bonding thiophenes failed to show this correlation. Interestingly, the PNU-120596 agonist co-application data revealed that for wild-type α7 nAChR, the 3-furan desensitized state was relatively stabilized compared with that of 2-furan, a reversal of the relationship observed with respect to the barrier for entry into the desensitized state. These data highlight the importance of hydrogen bonding on the receptor-ligand state, and suggest that it may be possible to fine-tune features of agonists that mediate state selection in the nAChR.  相似文献   

7.
The dicarboxylate radical -OOC--CH--CH(OH)COO- was generated in an N2O-saturated fumarate solution by high energy ionizing radiation. When NADH was present in the solution, product analysis indicated a stoichiometry of 2 molecules of the radical reacted with 1 NADH molecule to form 2 malate and 1 enzymatically active NAD+ molecules. In a similar experiment using tritium label on position A of NADH, due to an isotope effect, only 10% of the label was transferred to malate; most of the remaining tritium was found in the NAD+ formed. When lactate dehydrogenase was added, however, no la bel was detectable in NAD+, and over 80% of the tritium lost from NADH was found in malate. The stereospecific transfer of the hydrogen atom from lactate dehydrogenase-bound NADH to the dicarboxylate radical suggested that the free radical reaction must have taken place at the active site. The hydrogen atom transfer was inhibited by oxamate. Results from flow experiments in which an irradiated fumarate solution was mixed with a solutionof lactate dehydrogenase and NADH are in support of a mechanism in which the hydrogen atom transfer occurs in the first oxidation step.  相似文献   

8.
The present paper describes a theoretical approach to the catalytic reaction mechanism involved in the conversion of 5-androstene-3,17-dione to 4-androstene-3,17-dione. The model incorporates the side chains of the residues tyrosine (Tyr(14)), aspartate (Asp(38)) and aspartic acid (Asp(99)) of the enzyme Delta(5)-3-ketosteroid isomerase (KSI; EC 5.3.3.1). The reaction involves two steps: first, Asp(38) acts as a base, abstracting the 4beta-H atom (proton) from C-4 of the steroid to form a dienolate as the intermediate; next, the intermediate is reketonized by proton transfer to the 6beta-position. Each step goes through its own transition state. Functional groups of the Tyr(14) and Asp(99) side chains act as hydrogen bond donors to the O1 atom of the steroid, providing stability along the reaction coordinate. Calculations were assessed at high level Hartree-Fock theory, using the 6-31G(*) basis set and the most important physicochemical properties involved in each step of the reaction, such as total energy, hardness, and dipole moment. Likewise, to explain the mechanism of reaction, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), atomic orbital contributions to frontier orbitals formation, encoded electrostatic potentials, and atomic charges were used. Energy minima and transition state geometries were confirmed by vibrational frequency analysis. The mechanism described herein accounts for all of the properties, as well as the flow of atomic charges, explaining both catalytic mechanism and proficiency of KSI.  相似文献   

9.
10.
11.
12.
Summary Adenosylcobalamin-dependent rearrangements are enzyme catalyzed reactions in which a hydrogen atom is transferred from one carbon atom to an adjacent one in exchange for a group X which migrates in the opposite direction. In the hydrogen transfer step, the mechanism of which is reasonably well understood, the cofactor serves as an intermediate hydrogen carrier. The transfer of hydrogen to the cofactor involves homolysis of the carbon-cobalt bond to generate cob(II)alamin and the 5-deoxyadenos-5-yl radical, followed by abstraction of a hydrogen atom from the substrate to form 5-deoxyadenosine and the substrate radical. After migration of group X, the hydrogen atom is returned to the product radical by the reverse of the above reactions to generate the final product and reconstitute the cofactor.In contrast to the transfer of hydrogen, the mechanism of group X migration is poorly understood. Many reactions mechanisms have been proposed on chemical grounds, but there is insufficient biochemical evidence to permit a choice among these proposals. A quantity of negative evidence has accumulated suggesting that group X migration does not involve alkylation of the cobalt of cobalamin by the substrate, but in the absence of firm data supporting an alternative mechanism, even this weak conclusion must be regarded as provisional.An invited article. Supported in part by grant AM-16589 from the National Institutes of Health.  相似文献   

13.
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins. This enzyme oxidizes the C-15 hydroxyl group of prostaglandins and lipoxins to produce 15-keto metabolites which exhibit greatly reduced biological activities. A three-dimensional (3D) structure of 15-PGDH based on the crystal structures of the levodione reductase and tropinone reductase-II was generated and used for docking study with NAD+ coenzyme and PGE2 substrate. Three well-conserved residues among SDR family which correspond to Ser-138, Tyr-151, and Lys-155 of 15-PGDH have been shown to participate in the catalytic reaction. Based on the molecular interactions observed from 3D structure of 15-PGDH, we further propose that Gln-148 in 15-PGDH is important in properly positioning the 15-hydroxyl group of PGE2 by hydrogen bonding with the side-chain oxygen atom of Gln-148. This residue is found to be less conserved and replaceable by glutamyl, histidinyl, and asparaginyl residues in SDR family. Accordingly, site-directed mutagenesis of Gln-148 of 15-PGDH to alanine, glutamic acid, histidine, and asparagine (Q148A, Q148E, Q148H, and Q148N) was carried out. The activity of mutant Q148A was not detectable, whereas those of mutants Q148E, Q148H, and Q148N were comparable to or higher than the wild type. This indicates that the side-chain oxygen or nitrogen atom at position 148 of 15-PGDH plays an important role in anchoring C-15 hydroxyl group of PGE2 through hydrogen bonding for catalytic reaction.  相似文献   

14.
Coenzyme Q, besides its role in electron transfer reactions, may act as a radical scavenger. The effect of oxygen radicals produced by ultrasonic irradiation on the quinone ring was investigated. Aqueous solutions of a Q homologue, completely lacking the side chain, were irradiated and the modifications were spectrophotometrically followed. The experimental results show that both degradation and reduction of the benzoquinone ring took place when the irradiation was performed in water. Data obtained when ultrasonic irradiation was carried out in the presence of OH. scavengers, as formate, organic and inorganic buffers, suggest: a) the responsible species for most the ubiquinol generated by sonication appeared to be the superoxide radical b) addition reactions of OH. radicals with the aromatic ring led probably to the degradation of Coenzyme Q molecules.  相似文献   

15.
Microbially mediated reductive dechlorination of polychlorinated biphenyls (PCBs) in anaerobic sediments has been observed during laboratory experiments. Reductive dechlorination is a two-electron transfer reaction which involves the release of chlorine as a chloride ion and its replacement on the aromatic ring by hydrogen. The exact mechanism of the electron transfer for PCBs is unknown; however, this work shows that the source of the hydrogen atom is the proton (H+) from water.  相似文献   

16.
Different types of proton transfer occurring in biological systems are described with examples mainly from ribonucleotide reductase (RNR) and cytochrome c oxidase (CcO). Focus is put on situations where electron and proton transfer are rather strongly coupled. In the long range radical transfer in RNR, it is shown that the presence of hydrogen atom transfer (HAT) is the most logical explanation for the experimental observations. In another example from RNR, it is shown that a transition state for concerted motion of both proton and electron can be found even if the donors are separated by a quite long distance. In CcO, the essential proton transfer for the OO bond cleavage, and the most recent modelings of proton translocation are described, indicating a few remaining major problems.  相似文献   

17.
The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.  相似文献   

18.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase (AANAT)) is a critical enzyme in the light-mediated regulation of melatonin production and circadian rhythm. It is a member of the GNAT (GCN-5-related N-acetyltransferase) superfamily of enzymes, which catalyze a diverse array of biologically important acetyl transfer reactions from antibiotic resistance to chromatin remodeling. In this study, we probed the functional properties of two histidines (His-120 and His-122) and a tyrosine (Tyr-168) postulated to be important in the mechanism of AANAT based on prior x-ray structural and biochemical studies. Using a combination of steady-state kinetic measurements of microviscosity effects and pH dependence on the H122Q, H120Q, and H120Q/H122Q AANAT mutants, we show that His-122 (with an apparent pK(a) of 7.3) contributes approximately 6-fold to the acetyltransferase chemical step as either a remote catalytic base or hydrogen bond donor. Furthermore, His-120 and His-122 appear to contribute redundantly to this function. By analysis of the Y168F AANAT mutant, it was demonstrated that Tyr-168 contributes approximately 150-fold to the acetyltransferase chemical step and is responsible for the basic limb of the pH-rate profile with an apparent (subnormal) pK(a) of 8.5. Paradoxically, Y168F AANAT showed 10-fold enhanced apparent affinity for acetyl-CoA despite the loss of a hydrogen bond between the Tyr phenol and the CoA sulfur atom. The X-ray crystal structure of Y168F AANAT bound to a bisubstrate analog inhibitor showed no significant structural perturbation of the enzyme compared with the wild-type complex, but revealed the loss of dual inhibitor conformations present in the wild-type complex. Taken together with kinetic measurements, these crystallographic studies allow us to propose the relevant structural conformations related to the distinct alkyltransferase and acetyltransferase reactions catalyzed by AANAT. These findings have significant implications for understanding GNAT catalysis and the design of potent and selective inhibitors.  相似文献   

19.
I Vass  D Kirilovsky  A L Etienne 《Biochemistry》1999,38(39):12786-12794
We studied the effect of UV-B radiation (280-320 nm) on the donor- and acceptor-side components of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803 by measuring the relaxation of flash-induced variable chlorophyll fluorescence. UV-B irradiation increases the t(1/2) of the decay components assigned to reoxidation of Q(A)(-) by Q(B) from 220 to 330 micros in centers which have the Q(B) site occupied, and from 3 to 6 ms in centers with the Q(B) site empty. In contrast, the t(1/2) of the slow component arising from recombination of the Q(A)Q(B)(-) state with the S(2) state of the water-oxidizing complex decreases from 13 to 1-2 s. In the presence of DCMU, fluorescence relaxation in nonirradiated cells is dominated by a 0.5-0.6 s component, which reflects Q(A)(-) recombination with the S(2) state. After UV-B irradiation, this is partially replaced by much faster components (t(1/2) approximately 800-900 micros and 8-10 ms) arising from recombination of Q(A)(-) with stabilized intermediate photosystem II donors, P680(+) and Tyr-Z(+). Measurement of fluorescence relaxation in the presence of different concentrations of DCMU revealed a 4-6-fold increase in the half-inhibitory concentration for electron transfer from Q(A) to Q(B). UV-B irradiation in the presence of DCMU reduces Q(A) in the majority (60%) of centers, but does not enhance the extent of UV-B damage beyond the level seen in the absence of DCMU, when Q(A) is mostly oxidized. Illumination with white light during UV-B treatment retards the inactivation of PSII. However, this ameliorating effect is not observed if de novo protein synthesis is blocked by lincomycin. We conclude that in intact cyanobacterium cells UV-B light impairs electron transfer from the Mn cluster of water oxidation to Tyr-Z(+) and P680(+) in the same way that has been observed in isolated systems. The donor-side damage of PSII is accompanied by a modification of the Q(B) site, which affects the binding of plastoquinone and electron transport inhibitors, but is not related to the presence of Q(A)(-). White light, at the intensity applied for culturing the cells, provides protection against UV-B-induced damage by enhancing protein synthesis-dependent repair of PSII.  相似文献   

20.
Since morpholine oxidation has recently been shown to involve Cytochrome P450, the study on its mechanism at molecular level using quantum chemical calculations for the model of cytochrome active site is reported here. The reaction pathway is investigated for two electronic states, the doublet and the quartet, by means of density functional theory. The results show that morpholine hydroxylation occurs through hydrogen atom abstraction and rebound mechanism. However, in the low spin state, the reaction is concerted and hydrogen atom abstraction yields directly ferric-hydroxy morpholine complex without a distinct rebound step while in quartet state the reaction is stepwise. The presence of nitrogen in a morpholine heterocycle is postulated to greatly facilitate hydrogen abstraction. The hydroxylated product undergoes intramolecular hydrogen atom transfer from hydroxy group to nitrogen, leading to the cleavage of the C-N bond and the formation of 2-(2-aminoethoxy) acetaldehyde. The cleavage of the C-N bond is indicated as the rate-determining step for the studied reaction. The assistance of explicit water molecule is shown to lower the energy barrier for the C-N bond cleavage in enzymatic environment whereas solvent effects mimicked by COSMO solvent model have minor influence on relative energies along the pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号