首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-HT(1A) receptors have been hypothesized to mediate some of the neuronal plasticity and behavioral responses stimulated by serotonin selective reuptake inhibitors. Although the cellular signaling pathways required for inducing these actions have not yet been determined, roles for the neuroprotective extracellular-regulated kinase (ERK) mitogen-activated protein (MAP) kinase and Akt pathways have been suggested. In the current studies we have utilized primary cultures to directly determine whether hippocampal 5-HT(1A) receptors couple to activation of Akt and ERK. We found that E18 hippocampal neurons exhibit a twofold activation of Akt when exposed to nanomolar concentrations of 5-HT. The 5-HT(1/7) receptor-selective agonist 5-carboxamidotryptamine maleate (5-CT) and the 5-HT(1A/7) receptor-selective agonist 8-hydroxy-N,N-dipropyl-aminotetralin (8-OH-DPAT) maleate were found to activate Akt with equal efficacy, and similar potency, to 5-HT. p-MPPI and WAY-100635, antagonists selective for 5-HT(1A) receptors, completely inhibited 5-CT- stimulated Akt activation. Activation of Akt was also inhibited by pretreatment with pertussis toxin as well as the phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002. In contrast, the 5-HT selective antagonist, SB269970, caused no inhibition. Although the density of 5-HT(1A) receptors expressed by cultured neurons was sufficient to activate Akt, no activation of ERK was observed. These findings suggest that Akt, and not ERK, may be relevant to previous reports of hippocampal 5-HT(1A) receptors mediating neurotrophic responses.  相似文献   

2.
The most commonly prescribed antidepressants, the serotonin (5-HT) selective reuptake inhibitors, increase 5-HT without targeting specific receptors. Yet, little is known about the interaction of multiple receptor subtypes expressed by individual neurons. Specifically, the effect of increases in cAMP induced by Gs-coupled 5-HT receptor subtypes on the signaling pathways modulated by other receptor subtypes has not been studied. We have, therefore, examined the activation of the extracellular-regulated kinase (ERK) and Akt pathways by Gs-coupled 5-HT7A receptors and Gq-coupled 5-HT2A receptors, which are co-expressed in discrete brain regions. Agonists for both receptors were found to activate ERK and Akt in transfected PC12 cells. 5-HT2A receptor-mediated activation of the two pathways was found to be Ca2+-dependent. In contrast, 5-HT7A receptor-mediated activation of Akt required increases in both [cAMP] and intracellular [Ca2+], while activation of ERK was inhibited by Ca2+. The activation of ERK and Akt stimulated by simultaneous treatment of cells with 5-HT2A and 5-HT7A receptor agonists was found to be at least additive. Cell-permeable cAMP analogs mimicked 5-HT7A receptor agonists in enhancing 5-HT2A receptor-mediated activation of ERK and Akt. A role was identified for the cAMP-guanine exchange factor, Epac, in this augmentation of ERK, but not Akt, activation. Our finding of enhanced activation of neuroprotective Akt and ERK pathways by simultaneous occupancy of 5-HT2A and 5-HT7A receptors may also be relevant to the interaction of other neuronally expressed Gq- and Gs-coupled receptors.  相似文献   

3.
1. Emerging evidence indicates that brain-derived neurotrophic factor (BDNF) and its receptor TrkB play important roles in the mechanism of action of electroconvulsive shock (ECS) treatment. ECS produces a significant increase in brain BDNF synthesis together with a variety of neuroplastic changes including neurogenesis and axonal sprouting in the rodent brain, which is believed to be associated to the antidepressant effect of ECS. ERK1/2 (extracellular signal-regulated kinase-1/2) and Akt (protein kinase B), both intracellular signaling molecules being linked to neurotrophin signaling and synthesis, are important pathways triggered by TrkB autophosphorylation. 2. We have previously observed that chemical antidepressants induce a rapid activation of TrkB signaling in the rodent prefrontal cortex (PFC), which is likely a consequence of the stimulatory effect of antidepressants on BDNF synthesis. However, it is not known whether ECS triggers TrkB autophosphorylation and if any ECS-induced effect on TrkB function may be associated with the activation of the ERK1/2 and Akt pathways. 3. The present study assayed the phosphorylation levels of TrkB, ERK1/2, and Akt in the PFC of sham and ECS-treated rats. While the TrkB autophosphorylation (pTrkB) levels were decreased 30 min after both acute and chronic ECS, no change in pTrkB levels were observed at any other time points measured. In contrast, acute but not chronic ECS, transiently induced a very rapid and robust hyperphosphorylation of ERK1/2. Akt phosphorylation levels remained unchanged following acute or chronic ECS. Hence, although ECS effectively stimulates the ERK1/2 pathway in the PFC, this effect does not appear to involve upstream activation of TrkB.  相似文献   

4.
5.
Extracellular nucleotides are increasingly recognized as important regulators of growth in a variety of cell types. Recent studies have demonstrated that extracellular ATP is a potent inducer of fibroblast growth acting, at least in part, through an ERK1/2-dependent signaling pathway. However, the contributions of additional signaling pathways to extracellular ATP-mediated cell proliferation have not been defined. By using both pharmacologic and genetic approaches, we found that in addition to ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and p70 S6K-dependent signaling pathways are required for ATP-induced proliferation of adventitial fibroblasts. We found that extracellular ATP acting in part through G(i) proteins increased PI3K activity in a time-dependent manner and transient phosphorylation of Akt. This PI3K pathway is not involved in ATP-induced activation of ERK1/2, implying activation of independent parallel signaling pathways by ATP. Extracellular ATP induced dramatic increases in mTOR and p70 S6K phosphorylation. This activation of the mTOR/p70 S6 kinase (p70 S6K) pathway in response to ATP is because of independent contributions of PI3K/Akt and ERK1/2 pathways, which converge on the level of p70 S6K. ATP-dependent activation of mTOR and p70 S6K also requires additional signaling inputs perhaps from pathways operating through Galpha or Gbetagamma subunits. Collectively, our data demonstrate that ATP-induced adventitial fibroblast proliferation requires activation and interaction of multiple signaling pathways such as PI3K, Akt, mTOR, p70 S6K, and ERK1/2 and provide evidence for purinergic regulation of the protein translational pathways related to cell proliferation.  相似文献   

6.
In the brain, as in other tissues, estradiol interacts with growth factors. One of the growth factors that is involved in the neural actions of estradiol is insulin-like growth factor-I (IGF-I). Estradiol and IGF-I cooperate in the central nervous system to regulate neuronal development, neural plasticity, neuroendocrine events and the response of neural tissue to injury. The precise molecular mechanisms involved in these interactions are still not well understood. In the central nervous system there is abundant co-expression of estrogen receptors (ERs) and IGF-I receptors (IGF-IRs) in the same cells. Furthermore, the expression of estrogen receptors and IGF-I receptors in the brain is cross-regulated. In addition, using specific antibodies for the phosphorylated forms of extracellular-signal regulated kinase (ERK) 1 and ERK2 and Akt/protein kinase B (Akt/PKB) it has been shown that estradiol affects IGF-I signaling pathways in the brain. Estradiol treatment results in a dose-dependent increase in the phosphorylation of ERK and Akt/PKB in the brain of adult ovariectomized rats. In addition, estradiol and IGF-I have a synergistic effects on the activation of Akt/PKB in the adult rat brain. These findings suggest that estrogen effects in the brain may be mediated in part by the activation of the signaling pathways of the IGF-I receptor.  相似文献   

7.
Recent investigations have shown that three major striatal-signaling pathways (protein kinase A/DARPP-32, Akt/glycogen synthase kinase 3, and ERK) are involved in the regulation of locomotor activity by the monoaminergic neurotransmitter dopamine. Here we used dopamine transporter knock-out mice to examine which particular changes in the regulation of these cell signaling mechanisms are associated with distinct behavioral responses to psychostimulants. In normal animals, amphetamine and methylphenidate increase extracellular levels of dopamine, leading to an enhancement of locomotor activity. However, in dopamine transporter knock-out mice that display a hyperactivity phenotype resulting from a persistent hyperdopaminergic state, these drugs antagonize hyperactivity. Under basal conditions, dopamine transporter knock-out mice show enhanced striatal DARPP-32 phosphorylation, activation of ERK, and inactivation of Akt as compared with wild-type littermates. However, administration of amphetamine or methylphenidate to these mice reveals that inhibition of ERK signaling is a common determinant for the ability of these drugs to antagonize hyperactivity. In contrast, psychostimulants activate ERK and induce hyperactivity in normal animals. In hyperactive mice psychostimulant-mediated behavioral inhibition and ERK regulation are also mimicked by the serotonergic drugs fluoxetine and 5-carboxamidotryptamine, thereby revealing the involvement of serotonin-dependent inhibition of striatal ERK signaling. Furthermore, direct inhibition of the ERK signaling cascade in vivo using the MEK inhibitor SL327 recapitulates the actions of psychostimulants in hyperactive mice and prevents the locomotor-enhancing effects of amphetamine in normal animals. These data suggest that the inhibitory action of psychostimulants on dopamine-dependent hyperactivity results from altered regulation of striatal ERK signaling. In addition, these results illustrate how altered homeostatic state of neurotransmission can influence in vivo signaling responses and biological actions of pharmacological agents used to manage psychiatric conditions such as Attention Deficit Hyperactivity Disorder (ADHD).  相似文献   

8.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

9.
Neary JT  Kang Y  Shi YF 《Neurochemical research》2004,29(11):2037-2042
In the CNS, extracellular ATP can function as an excitatory neurotransmitter as well as a trophic factor. These short-term and long-term actions are mediated by nucleotide receptors. Extracellular ATP can also act as a co-mitogen in conjunction with polypeptide growth factors such as basic fibroblast growth factor (FGF2). Cellular proliferation, differentiation and survival are regulated by signaling cascades composed of protein kinases, including extracellular signal regulated protein kinase (ERK) and protein kinase B (also called Akt). Here we summarize recent studies on nucleotide receptor signaling to ERK and Akt in astrocytes and the role of protein kinase cascades in mediating the trophic actions of extracellular ATP, alone or together with FGF2. Because extracellular ATP and FGF2 contribute to the hyperplastic and hypertrophic response of astrocytes to CNS injuries, an understanding of their protein kinase signaling mechanisms may lead to novel therapeutic approaches for neurological conditions that involve gliosis and the generation of reactive astrocytes, such as trauma, stroke, seizure and neurodegenerative and demyelinating disorders.Special issue dedicated to Lawrence F. Eng.  相似文献   

10.
11.
Mouse kidney proximal tubular epithelial (MK-PT) cells die by apoptosis over 7-10 days when deprived of all survival factors. We show here that withdrawal of all survival factors from MK-PT cells is associated with a progressive increase in the activity of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and a progressive decrease in phosphorylated Akt, a kinase critical to cell survival. Pharmacological inhibition of MEK1/2, the immediate upstream kinase for ERK1/2, not only prevented the decrease in phosphorylated Akt, but also prolonged MK-PT cell survival. Inhibition of ERK1/2, by itself, in the absence of any other known survival factors, was as potent as epidermal growth factor in maintaining MK-PT cell viability. ERK1/2 co-immunoprecipitated with Akt in a multimolecular assembly of signaling molecules, containing at a minimum ERK1/2, Akt, Rsk, and 3-phosphoinositide dependent kinase 1 (PDK1). We hypothesize that the kinase Rsk, whose activation requires phosphorylation by both ERK1/2 and PDK1, acts as a bridge bringing ERK1/2 into proximity with PDK1-associated Akt. Although a number of interactions between the Raf-MEK-ERK and PI3K-Akt signaling pathways have been described, our results are the first to show modulation of Akt activity by signaling events originating with ERK1/2. Spontaneous activation of ERK1/2 occurs via MEK1/2 and appears to depend on oxidant stress, accompanying induction of the default pathway of apoptosis. Together, these data suggest that the spontaneous activation of ERK1/2, in the absence of known extracellular stimuli, represents a previously unrecognized major regulatory pathway determining the fate of cells destined to die by the default pathway of apoptosis.  相似文献   

12.
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.  相似文献   

13.
Glutamine, the most abundant amino acid in the bloodstream, is the preferred fuel source for enterocytes and plays a vital role in the maintenance of mucosal growth. The molecular mechanisms regulating the effects of glutamine on intestinal cell growth and survival are poorly understood. Here, we show that addition of glutamine (1 mmol/l) enhanced rat intestinal epithelial (RIE)-1 cell growth; conversely, glutamine deprivation increased apoptosis as noted by increased DNA fragmentation and caspase-3 activity. To delineate signaling pathways involved in the effects of glutamine on intestinal cells, we assessed activation of extracellular signal-related kinase (ERK), protein kinase D (PKD), and phosphatidylinositol 3-kinase (PI3K)/Akt, which are important pathways in cell growth and survival. Addition of glutamine activated ERK and PKD in RIE-1 cells after a period of glutamine starvation; inhibition of ERK, but not PKD, increased cell apoptosis. Conversely, glutamine starvation alone increased phosphorylated Akt; inhibition of Akt enhanced RIE-1 cell DNA fragmentation. The role of ERK was further delineated using RIE-1 cells stably transfected with an inducible Ras. Apoptosis was significantly increased following ERK inhibition, despite Ras activation. Taken together, these results identify a critical role for the ERK signaling pathways in glutamine-mediated intestinal homeostasis. Furthermore, activation of PI3K/Akt during periods of glutamine deprivation likely occurs as a protective mechanism to limit apoptosis associated with cellular stress. Importantly, our findings provide novel mechanistic insights into the antiapoptotic effects of glutamine in the intestine.  相似文献   

14.
Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway, in contrast to that of 5-HT. The current data show that amitriptyline-induced FGFR activation might occur by the MMP-dependent shedding of FGFR ligands, such as FGF-2, thus resulting in GDNF production.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling.  相似文献   

16.
The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT(4)R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT(4)Rs in human embryonic kidney 293 cells, activated the ERK pathway in a G(s)/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (G(q)/G(i)/G(o)) and associated downstream messengers were not implicated in the 5-HT(4)R-activated ERK pathway. The 5-HT(4)R-mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of beta-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT(4)R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT(4)R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT(4)Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT(4)Rs may use ERK pathways to control memory process.  相似文献   

17.
In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) enhances the action of neuregulin, the most potent known mitogen for SCs, by synergistically increasing the activation of two crucial signaling pathways: ERK and Akt. However, the underlying mechanism of cross-talk between neuregulin and cAMP signaling remains mostly undefined. Here, we report that the activation of protein kinase A (PKA), but not that of exchange protein activated by cAMP (EPAC), enhances S-phase entry of SCs by synergistically enhancing the ligand-dependent tyrosine phosphorylation/activation of the neuregulin co-receptor, ErbB2-ErbB3. The role of PKA in neuregulin-ErbB signaling was confirmed using PKA inhibitors, pathway-selective cAMP analogs, and natural ligands stimulating PKA activity in SCs, such as adenosine and epinephrine. Two basic observations defined the synergistic action of PKA as "gating" for neuregulin-ErbB signaling: 1) the activation of PKA was not sufficient to induce S-phase entry or the activation of either ErbB2 or ErbB3; and 2) the presence of neuregulin was strictly required to ignite ErbB activation and thereby ERK and Akt signaling. However, PKA directly phosphorylated ErbB2 on Thr-686, a highly conserved intracellular regulatory site that was required for the PKA-mediated synergistic enhancement of neuregulin-induced ErbB2-ErbB3 activation and proliferation in SCs. The gating action of PKA on neuregulin-induced ErbB2-ErbB3 activation has important biological significance, because it insures signal amplification into the ERK and Akt pathways without compromising either the neuregulin dependence or the high specificity of ErbB signaling pathways.  相似文献   

18.
Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse brain disease. Whereas the biological actions linking hyperhomocysteinemia to the cognitive dysfunction are not well understood, we tried to establish relationships between hyperhomocysteinemia and alterations of signaling pathways. In the brain of CBS-deficient mice, a murine model of hyperhomocysteinemia, we previously found an activation of extracellular signal-regulated kinase (ERK) pathway and an increase of Dyrk1A, a serine/threonine kinase involved in diverse functions ranging from development and growth to apoptosis. We then investigated the relationship between Dyrk1A and the signaling pathways initiated by receptor tyrosine kinases (RTK), the ERK and PI3K/Akt pathways. We found a significant increase of phospho-ERK, phospho-MEK, and phospho-Akt in the brain of CBS-deficient and Dyrk1a-overexpressing mice. This increase was abolished when CBS-deficient and Dyrk1A-transgenic mice were treated with harmine, an inhibitor of Dyrk1A kinase activity, which emphasizes the role of Dyrk1A activity on ERK and Akt activation. Sprouty 2 protein level, a negative feedback loop modulator that limits the intensity and duration of RTK activation, is decreased in the brain of CBS-deficient mice, but not in the brain of Dyrk1A transgenic mice. Furthermore, a reduced Dyrk1A and Grb2 binding on sprouty 2 and an increased interaction of Dyrk1A with Grb2 were found in the brain of Dyrk1A transgenic mice. The consequence of Dyrk1A overexpression on RTK activation seems to be a decreased interaction of sprouty 2/Grb2. These observations demonstrate ERK and Akt activation induced by Dyrk1A in the brain of hyperhomocysteinemic mice and open new perspectives to understand the basis of the cognitive defects in hyperhomocysteinemia.  相似文献   

19.
20.
Stimulation of osteoblast survival signals may be an important mechanism of regulating bone anabolism. Protein kinase B (PKB/Akt), a serine-threonine protein kinase, is a critical regulator of normal cell growth, cell cycle progression, and cell survival. In this study we have investigated the signaling pathways activated by growth factors PDGF-BB, EGF, and FGF-2 and determined whether PDGF-BB, EGF, and FGF-2 activated Akt in human or mouse osteoblastic cells. The results demonstrated that both ERK1 and ERK2 were activated by FGF-2 and PDGF-BB. Activation of ERK1 and ERK2 by PDGF-BB and FGF-2 was inhibited by PD 098059 (100 microM), a specific inhibitor of MEK. Wortmannin (500 nM), a specific inhibitor of phosphatidylinositol 3-kinase ( PI 3-K), inhibited the activation of ERK1 and ERK2 by PDGF-BB but not by FGF-2 suggesting that PI 3-K mediated the activation of ERK MAPK pathway by PDGF-BB but not by FGF-2. Rapamycin, an inhibitor of p70 S6 protein kinase and a downstream target of ERK1/2 and PI 3-K, did not affect the activation of ERK1 and ERK2 by the growth factors. Furthermore, our results demonstrated that Akt, a downstream target of PI 3-K, was activated by PDGF-BB but not by FGF-2. Akt activation by PDGF-BB was inhibited by PI 3-kinase inhibitor LY294002. Rapamycin had no effect on Akt activation. Epidermal growth factor (EGF) also activated Akt in osteoblastic cells which was inhibited by LY294002 but not by rapamycin. Taken together, our data for the first time revealed that the activation of ERK1/2 by PDGF-BB is mediated by PI 3-K, and secondly, Akt is activated by PDGF-BB and EGF but not by FGF-2 in human and mouse osteoblastic cells. These results are of critical importance in understanding the role of these growth factors in apoptosis and cell survival. PDGF-BB and EGF but not FGF-2 may stimulate osteoblast cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号