首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of a single administration of ethanol (2 g/kg body weight) on hepatic and renal diamine oxidase activity was studied in fasted rats. Diamine oxidase activity significantly increased in liver and kidney 6 h after ethanol intubation. Pyrazole (an inhibitor of alcohol dehydrogenase), cycloheximide or actinomycin D (inhibitors of macromolecular syntheses), as well as prior adrenalectomy, prevented the ethanol-induced stimulation of diamine oxidase in the liver, but not in the kidney. The results demonstrated that the enhancement of diamine oxidase activity in the liver was due to an enzyme induction mediated by alcohol metabolism as well as by adrenals. In contrast, the stimulation of diamine oxidase activity in the kidney did not depend on synthesis of new enzyme molecules and was not mediated by ethanol metabolism or adrenal hormones.  相似文献   

3.
Hypothermia after acute ethanol and benzyl alcohol administration   总被引:1,自引:0,他引:1  
G Freund 《Life sciences》1973,13(4):345-349
The acute administration of ethanol like other CNS depressing drugs, lowers body temperatures in mice. Therefore many of the biological effects attributed to ethanol itself may be secondary to hypothermia. The degree of hypothermia was dose dependent and ranged from 1.5 C after 1.9 g/kg to 4.5°C after 5.7 g/kg body weight. This effect was independent of the route of administration (oral, intraperitoneal), the temperature of the administered solutions and the tonicity (0.9% sodium chloride). Hypothermia was prevented by elevating environmental temperatures. Benzyl alcohol which is widely used as preservative in parenteral solutions also has a behaviorally sedating and hypothermic effect.  相似文献   

4.
The effects of chronic ethanol administration on the hepatic surface membrane were examined. The binding of the lectin, concanavalin A (Con A), to isolated hepatocytes was used to ascertain changes in the hepatic plasma membrane, especially in regard to glycoprotein composition, due to chronic ethanol feeding. Hepatocytes, isolated from rats fed ethanol for 5 to 7 weeks, had a decreased ability to bind Con A when compared to hepatocytes from either the pair-fed controls or ad libitum chow-fed rats. Since decreased Con A binding was more apparent at high Con A concentrations, reduced lectin binding likely reflected changes in the composition of surface membrane glycoproteins in the livers of the ethanol-fed rats. When ethanol (50 mM) was added to the incubation medium containing hepatocytes from ethanol-fed rats, pair-fed controls, or chow-fed rats, no effects on Con A binding were observed. These results indicate that chronic ethanol administration induces changes in the oligosaccharide chains of plasma membrane glycoproteins in the liver. Such alterations may play a role in the pathogenesis of alcoholic liver disease.  相似文献   

5.
The induction of metallothionein (MT) isoform synthesis was investigated in mouse cerebral cortex 18 h after oral ethanol administration. The expression of MT-I isoform mRNA increased in a dose-dependent manner after ethanol loading at doses between 2 g/kg (ethanol/body weight) and 8 g/kg. Lipid peroxide formation, measured as the amount of malondialdehyde-reactive substances, remained at the control level after all of the administered ethanol doses. The expression of MT-III isoform mRNA remained at the control level up until an ethanol loading dose of 4 g/kg and then finally increased to a significant level at a dose of 8 g/kg, which is almost the LD50 for oral ethanol in mice. The different patterns of MT synthesis induction among MT isoforms suggests that the MT-I isoform, which is ubiquitous in mammalian tissues, plays a significant role as an antioxidant. On the other hand, the MT-III isoform, which has a limited tissue distribution, especially in the central nervous system, seems to be implicated in tissue repair and/or protection against critical tissue injury.  相似文献   

6.
G Y Sun  H M Huang  D Z Lee  A Y Sun 《Life sciences》1984,35(21):2127-2133
Two types of plasma membranes isolated from rat brain cortex were used to study the membrane-perturbing properties of ethanol. Rats administered ethanol in the form of a liquid diet showed an increase in levels of phosphatidylserines, phosphatidylinositols and phosphatidic acids as compared to controls. The results present evidence that chronic ethanol treatment results in an increase in the acidic phospholipids in brain membranes. This type of membrane modification may have important implications for the function of membrane transport enzymes such as (Na+, K+)-ATPase, which also increases in activity upon chronic ethanol administration.  相似文献   

7.
We have studied the effects of long-term administration of ethanol on the distribution and pharmacokinetics of alpha-tocopherol. In rats fed ethanol (35% of total energy) for 5-6 weeks concentration of alpha-tocopherol in whole liver was reduced by 25% as compared to the pair-fed controls (P less than 0.003). This reduction was significant in the parenchymal cells (28%, P less than 0.004), whereas no significant difference was observed for the nonparenchymal cells. Mitochondrial alpha-tocopherol content was reduced by 55% in the ethanol-treated rats as compared to the controls (P less than 0.002), whereas no significant difference was observed in microsomes, light mitochondria or cytosol. The serum levels of alpha-tocopherol showed no significant difference between the groups. When in vivo labeled chylomicron alpha-[3H]tocopherol was injected intravenously to anesthetized rats, we found a significant increase in serum half-life of alpha-tocopherol in the ethanol-treated group as compared to the controls (P less than 0.025). Hepatic alpha-[3H]tocopherol content was similar in the two groups 24 h after injection.  相似文献   

8.
9.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

10.
11.
Incorporation of C14 Leucine was determined in vitro or in vivo in isolated mitochondria and microsomes of rat brain and liver after acute or chronic ethanol administration in vivo.The protein synthesis in mitochondrial and microsomal preparation was inhibited respectively by chloramphenicol and cycloeximide, specific inhibitors for the two systems tested. The experimental data demonstrate that the in vitro protein synthesis in both systems, mitochondrial and microsomal, is strongly affected only after chronic treatment which produces significant activation at the mitochondrial and microsomal level in the liver and an inhibition on the same systems of the brain.The data for in vivo protein synthesis instead show strong inhibition after acute administration, except for brain mitochondria, which are practically unaffected, while after chronic treatment no significant alterations are observed.  相似文献   

12.
S C Lu 《FASEB journal》1999,13(10):1169-1183
  相似文献   

13.
14.
The generation of free radicals in rat liver following the acute oral administration of ethanol was studied with the spin-trapping method, using a deuterated derivative of phenyl-N-tert-butylnitrone (PBN-d14) as the spin-trapping agent. After administration of ethanol and PBN-d14 to rats, organic extracts of the liver were prepared and subjected to ESR spectroscopy. In the case of ethanol-treated rats, the ESR spectra indicated that mixtures of radicals had been trapped, while spectra from control rats were essentially negative. The predominant spin adduct detected after ethanol treatment is proposed to be from a carbon-centered, primary alkyl radical, based on gamma-hydrogen hyperfine splitting patterns observed with PBN-d14. Oxygen-centered radicals also contributed to the ESR spectra. Liver extracts also contained low concentrations of the 1-hydroxyethyl radical spin adduct, which was indicated by weak spectral lines corresponding to those of the 1-13C-ethanol adduct. These data confirm previous suggestions that ethanol is metabolized to a free radical metabolite in rat liver. In addition, some information on types of lipid radicals generated during alcohol intoxication has been obtained.  相似文献   

15.
The present study was conducted to examine the nature of the increase in tyrosine aminotransferase (TAT) activity by acute ethanol administration. A significant rise in aminotransferase activity was observed as early as 1 hr after intact rats were gavaged with ethanol. Ethanol administration also increased TAT activity in adrenalectomized rats. Inhibition of ethanol metabolism by pyrazole administration had no effect on the ethanol-induced increase in TAT activity. Immunochemical analyses revealed that the enhancement of TAT activity in ethanol-fed rats correlated with an increase in aminotransferase protein. Measurement of the rate of TAT synthesis showed that in ethanol-fed rats, [3H]leucine was incorporated into the aminotransferase protein at a higher rate than in controls by a factor which was similar to the enhancement in enzyme activity. Our findings indicate that an acceleration of TAT synthesis fully accounts for the increase in TAT activity during the early stage of enzyme induction. TAT induction by ethanol administration is not dependent upon an increase in adrenal corticosteroid production, nor does it require ethanol metabolism.  相似文献   

16.
Previous studies demonstrated that loss of CL in the yeast mutant crd1Δ leads to perturbation of mitochondrial iron‑sulfur (FeS) cluster biogenesis, resulting in decreased activity of mitochondrial and cytosolic Fe-S-requiring enzymes, including aconitase and sulfite reductase. In the current study, we show that crd1Δ cells exhibit decreased levels of glutamate and cysteine and are deficient in the essential antioxidant, glutathione, a tripeptide of glutamate, cysteine, and glycine. Glutathione is the most abundant non-protein thiol essential for maintaining intracellular redox potential in almost all eukaryotes, including yeast. Consistent with glutathione deficiency, the growth defect of crd1Δ cells at elevated temperature was rescued by supplementation of glutathione or glutamate and cysteine. Sensitivity to the oxidants iron (FeSO4) and hydrogen peroxide (H2O2), was rescued by supplementation of glutathione. The decreased intracellular glutathione concentration in crd1Δ was restored by supplementation of glutamate and cysteine, but not by overexpressing YAP1, an activator of expression of glutathione biosynthetic enzymes. These findings show for the first time that CL plays a critical role in regulating intracellular glutathione metabolism.  相似文献   

17.
At low concentrations ethanol is metabolized largely by alcohol dehydrogenase to acetaldehyde, while at higher concentrations a microsomal ethanol oxidising system (MEOS) is involved, namely cytochrome P450 IIE1, which also probably generates free radical species. In hyperthyroidism hepatic glutathione stores are depleted and net superoxide anion production occurs. In contrast, in hypothyroidism hepatic glutathione may be increased and thus renders the liver less sensitive to alcohol generated free radical production. Steroid hormones inhibit lipid peroxidation. Sixty male Wistar rats either underwent thyroidectomy, adrenalectomy, or sham procedures. Twenty control animals were pair fed with thyroidectomized animals, whilst another twenty fed ad libitum. An intraperitoneal injection of alcohol (75 mmol/kg) was given 2.5 h prior to sacrifice to half the animals in each group, the remainder receiving saline. The total hepatic glutathione contents of the pair fed and the ad libitum groups were not different, but were significantly increased by thyroidectomy (p = <0.001). This effect was significantly reduced by alcohol (p < 0.01). The sham procedures and dietary restrictions had no effect. The ethanol alone reduced total hepatic glutathione, but this only reached statistical significance in the thyroidectomized and sham-adrenalectomized groups. Hepatic malonaldehyde (MDA) levels were significantly reduced in the thyroidectomy group but alcohol had no effect on them. We conclude that hypothyroidism increased hepatic glutathione status, presumably by reducing radical production by enzyme systems, which would otherwise consume this important scavenger. Long term exposure to ethanol with induction of MEOS is probably required for it to generate toxic levels of free radical species.  相似文献   

18.
Effects of ethanol feeding on hepatic lipid synthesis   总被引:3,自引:0,他引:3  
Rats were fed a high-fat, liquid diet containing either 36% of total calories as ethanol or an isocaloric amount of sucrose, for a period up to 35 days. At different time intervals we measured the effects of ethanol administration on the activities of a number of key enzymes involved in hepatic lipid synthesis. At the start of the experimental period the activities of acetyl-CoA carboxylase and fatty acid synthase, measured in liver homogenates, increased in the control as well as in the ethanol-fed group. After 35 days these enzyme activities were still elevated but there were no significant differences between the two groups. In hepatocytes isolated from controls as well as from ethanol-fed rats, short-term incubations with ethanol induced an increase in the rate of fatty acid synthesis and in the activities of acetyl-CoA carboxylase and fatty acid synthase. However, no alterations in the regulation of these enzymes by short-term modulators of lipogenesis were apparent in hepatocytes isolated from alcohol-treated animals. The results do not indicate a major role for the enzymes of de novo fatty acid synthesis in the development of the alcoholic fatty liver. The amount of liver triacylglycerols increased in ethanol-fed rats during the entire treatment period, whereas the hepatic levels of phosphatidylcholine and phosphatidylethanolamine were not affected by ethanol ingestion. Ethanol administration for less than 2 weeks increased the activities of phosphatidate phosphohydrolase, diacylglycerol acyltransferase, and microsomal phosphocholine cytidylyltransferase, whereas the cytosolic activity of phosphocholine cytidylyltransferase was slightly decreased. Upon prolonged ethanol administration the activities of these enzymes were slowly restored to control values after 35 days, suggesting development of some kind of adaptation. It is interesting that, although the activities of phosphatidate phosphohydrolase and diacylglycerol acyltransferase were restored to the levels found in the control rats, this effect was not accompanied by a stabilization or decrease of the concentration of hepatic triacylglycerols.  相似文献   

19.
20.
1. Administration of ethanol (14g/day per kg) for 21–26 days to rats increases the ability of the animals to metabolize ethanol, without concomitant changes in the activities of liver alcohol dehydrogenase or catalase. 2. Liver slices from rats chronically treated with ethanol showed a significant increase (40–60%) in the rate of O2 consumption over that of slices from control animals. The effect of uncoupling agents such as dinitrophenol and arsenate was completely lost after chronic treatment with ethanol. 3. Isolated mitochondria prepared from animals chronically treated with ethanol showed no changes in state 3 or state 4 respiration, ADP/O ratio, respiratory control ratio or in the dinitrophenol effect when succinate was used as substrate. With β-hydroxybutyrate as substrate a small but statistically significant decrease was found in the ADP/O ratio but not in the other parameters or in the dinitrophenol effect. Further, no changes in mitochondrial Mg2+-activated adenosine triphosphatase, dinitrophenol-activated adenosine triphosphatase or in the dinitrophenol-activated adenosine triphosphatase/Mg2+-activated adenosine triphosphatase ratio were found as a result of the chronic ethanol treatment. 4. Liver microsomal NADPH oxidase activity, a H2O2-producing system, was increased by 80–100% by chronic ethanol treatment. Oxidation of formate to CO2 in vivo was also increased in these animals. The increase in formate metabolism could theoretically be accounted for by an increased production of H2O2 by the NADPH oxidase system plus formate peroxidation by catalase. However, an increased production of H2O2 and oxidation of ethanol by the catalase system could not account for more than 10–20% of the increased ethanol metabolism in the animals chronically treated with ethanol. 5. Results presented indicate that chronic ethanol ingestion results in a faster mitochondrial O2 consumption in situ suggesting a faster NADH reoxidation. Although only a minor change in mitochondrial coupling was observed with isolated mitochondria, the possibility of an uncoupling in the intact cell cannot be completely discarded. Regardless of the mechanism, these changes could lead to an increased metabolism of ethanol and of other endogenous substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号