首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We investigated variations in genetic diversity and plant fitness in a rare endemic metallophyte of calamine soils, Viola calaminaria, in relation to population size, population connectivity and population history in order to evaluate and discuss potential conservation strategies for the species. Mean population genetic diversity (H(s) = 0.25) of V. calaminaria was similar to endemic non-metallophyte taxa. Twenty-one per cent of the genetic variation was partitioned among populations and a low (9%) but significant differentiation was found among geographical regions. Our results did not support the hypothesis that the acquisition of metal tolerance may result in reduced genetic diversity, and suggested that strict metallophytes do not exhibit higher inter-population differentiation resulting from scattered habitats. There were no relationships between population genetic diversity and population size. Significant correlations were found between plant fitness and (i) population size and (ii) connectivity index. Recently-founded populations exhibited the same level of genetic diversity as ancient populations and also possessed higher plant fitness. There was no indication of strong founder effects in recently-established populations. The results suggest that the creation of habitats through human activities could provide new opportunities for conservation of this species.  相似文献   

2.
North American freshwater mussel species have experienced substantial range fragmentation and population reductions. These impacts have the potential to reduce genetic connectivity among populations and increase the risk of losing genetic diversity. Thirteen microsatellite loci and an 883 bp fragment of the mitochondrial ND1 gene were used to assess genetic diversity, population structure, contemporary migration rates, and population size changes across the range of the Sheepnose mussel (Plethobasus cyphyus). Population structure analyses reveal five populations, three in the Upper Mississippi River Basin and two in the Ohio River Basin. Sampling locations exhibit a high degree of genetic diversity and contemporary migration estimates indicate that migration within river basins is occurring, although at low rates, but there is no migration is occurring between the Ohio and Mississippi river basins. No evidence of bottlenecks was detected, and almost all locations exhibited the signature of population expansion. Our results indicate that although anthropogenic activity has altered the landscape across the range of the Sheepnose, these activities have yet to be reflected in losses of genetic diversity. Efforts to conserve Sheepnose populations should focus on maintaining existing habitats and fostering genetic connectivity between extant demes to conserve remaining genetic diversity for future viable populations.  相似文献   

3.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

4.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

5.
Landscape genetics increasingly focuses on the way in which landscape features cause the fragmentation of lineages of terrestrial organisms. However, landscape features can also provide functional connectivity or corridors, enhancing the dispersal of plant populations, particularly the case in riparian habitat. Unfortunately, recent research in tree genetics has paid little attention to this role. To examine the possible effects of landscape connectivity on the current population genetic distribution of Fraxinus mandshurica and to provide insights into conserving the local genetic diversity for this endangered tree species, we used nine nuclear microsatellite loci to examine the spatial genetic structure of F. mandshurica at multiple-scales over a riparian–mountain landscape in Northeast China. F-statistics indicated that the magnitude of among-population genetic differentiation was significantly higher between the riparian and mountain habitats than within the riparian habitat. Spatial analysis of molecular variance and principal coordinate analysis consistently revealed that this species exhibited a clear landscape genetic structure between the riparian and mountain habitats, despite no significant isolation by distance pattern being identified by the Mantel test. Spatial autocorrelation analysis further demonstrated significant, positive fine-scale spatial genetic structure among individuals over short distances (<80 m) in each mountain population. Conversely, no spatial genetic structures were identified within and among the riparian populations. Overall, the results suggest that seed dispersal is very low among mountain populations; however seed transport is probably enhanced by a secondary phase of hydrochory (water-dispersal) among riparian populations during flooding. Despite this, there was no significant accumulation of genetic diversity in downstream populations along the main channel. This result suggests that hydrochory is not sufficient to produce a clear unidirectional gene flow along the water course, although it may impede the development of spatial genetic structuring within and among riparian populations.  相似文献   

6.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

7.
Amphibians are a globally distributed and diverse lineage, but much of our current understanding of their population genetic structure comes from studies in mesic temperate habitats. We characterize the population genetic structure of two sympatric explosive breeding amphibians in the southwestern deserts of the United States: the Great Plains toad ( Anaxyrus cognatus ) and Couch's spadefoot toad ( Scaphiopus couchii ). For both species, we find limited genetic differentiation even between populations in adjacent valleys separated by dispersal barriers such as mountainous habitats. To understand how population genetic patterns in these two arid-adapted species compare to taxa in more mesic environments, we computed a standardized measure of population differentiation for A. cognatus , S. couchii , and for pond-breeding amphibians that inhabit mesic temperate environments. Our results indicate that the arid-adapted species have lower population genetic structure at fine and moderate scales than most other amphibian species we surveyed. We hypothesize that stochasticity in the availability of appropriate breeding sites as well as landscape homogeneity may result in increased population connectivity in desert-adapted frogs. Future work examining fine-scale population structure in amphibians from a diversity of habitats will test the generality of our findings. Intraspecific comparisons among localities with varied seasonality and habitats will be particularly useful for investigating the interaction between species-typical population dynamics and environmental characteristics as determinants of population connectivity in pond-breeding amphibians.  相似文献   

8.
Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) in potato (Solanum tuberosum L.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.  相似文献   

9.
In hyper fragmented biomes, conservation of extant biota relies on preservation and proper management of remnants. The maintenance of genetic diversity and functional connectivity in a landscape context is probably key to long-term conservation of remnant populations. We measured the genetic diversity in seedlings and adults of tree Copaifera langsdorffii and evaluated whether edge and density-dependent effects drive natural regeneration in a set of very small and degraded Brazilian Atlantic forest fragments. We evaluated the role of small remnants in the conservation of genetic diversity in a hyper fragmented landscape and discuss the challenge of long-term population sustainability of such altered habitats. High genetic diversity in adults indicated these fragments are valuable targets for C. langsdorffii in situ conservation, but both genetic diversity and divergence among patches decreased in seedlings. In our landscape, regeneration increased as it neared edges and adults; suggesting this population is resilient to fragmentation. However, at a broader scale, current levels of gene flow have not been sufficient to prevent the loss of genetic diversity across generations. Restoration plans, even at a small scale, are necessary to promote fragment connectivity and spatially expand opportunities for the fairly restricted gene flow observed in this severely fragmented Brazilian Atlantic forest region.  相似文献   

10.
Zhang X  Shi MM  Shen DW  Chen XY 《PloS one》2012,7(6):e39146
Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity.  相似文献   

11.
12.
Endemic Hawaiian species in the genus Plantago show considerable morphological and ecological diversity. Despite their variation, a recent phylogenetic analysis based on DNA sequence data showed that the group is monophyletic and that sequence variation among species and morphotypes is low. This lack of sequence polymorphisms resulted in an inability to resolve species and population affinities within the most recently derived clade of this lineage. To assess species boundaries, population genetic structure and interpopulation connectivity among the morphologically and ecologically distinct populations within this clade, genetic variation was examined using eight microsatellite loci. Within‐population genetic diversity was found to be lowest in the Maunaiu, Hawai'i population of the endangered P. hawaiensis, and highest in the large P. pachyphylla population from 'Eke, West Maui. Isolation by distance across the range of populations was detected and indicated restricted dispersal. This result is likely to be attributable to few interisland dispersal events in the evolutionary history of this lineage. Genetic differentiation within islands tended to be higher among populations occurring in contrasting bog and woodland habitats, suggesting ecological barriers to gene flow and the potential role of ecological divergence in population diversification. Overall, these results are consistent with findings from phylogenetic analysis of the entire lineage. Our data bring new insights regarding patterns of dispersal and population genetic structure to this endemic and endangered group of island taxa. As island environments become increasingly fragmented, information of this type has important implications for the successful management of these fragile populations and habitats.  相似文献   

13.
It is difficult to assess the relative influence of anthropogenic processes (e.g., habitat fragmentation) versus species’ biology on the level of genetic differentiation among populations when species are restricted in their distribution to fragmented habitats. This issue is particularly problematic for Australian rock-wallabies (Petrogale sp.), where most previous studies have examined threatened species in anthropogenically fragmented habitats. The short-eared rock-wallaby (Petrogale brachyotis) provides an opportunity to assess natural population structure and gene flow in relatively continuous habitat across north-western Australia. This region has reported widespread declines in small-to-medium sized mammals, making data regarding the influence of habitat connectivity on genetic diversity important for broad-scale management. Using non-invasive and standard methods, 12 microsatellite loci and mitochondrial DNA were compared to examine patterns of population structure and dispersal among populations of P. brachyotis in the Kimberley, Western Australia. Low genetic differentiation was detected between populations separated by up to 67?km. The inferred genetic connectivity of these populations suggests that in suitable habitat P. brachyotis can potentially disperse far greater distances than previously reported for rock-wallabies in more fragmented habitat. Like other Petrogale species male-biased dispersal was detected. These findings suggest that a complete understanding of population biology may not be achieved solely by the study of fragmented populations in disturbed environments and that management strategies may need to draw on studies of populations (or related species) in undisturbed areas of contiguous habitat.  相似文献   

14.
The rapid expansion of road networks has reduced connectivity among populations of flora and fauna. The resulting isolation is assumed to increase population extinction rates, in part because of the loss of genetic diversity. However, there are few cases where loss of genetic diversity has been linked directly to roads or other barriers. We analysed the effects of such barriers on connectivity and genetic diversity of 27 populations of Ovis canadensis nelsoni (desert bighorn sheep). We used partial Mantel tests, multiple linear regression and coalescent simulations to infer changes in gene flow and diversity of nuclear and mitochondrial DNA markers. Our findings link a rapid reduction in genetic diversity (up to 15%) to as few as 40 years of anthropogenic isolation. Interstate highways, canals and developed areas, where present, have apparently eliminated gene flow. These results suggest that anthropogenic barriers constitute a severe threat to the persistence of naturally fragmented populations.  相似文献   

15.
Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.  相似文献   

16.
Eight populations of Aster tripolium (Compositae) and six of Salicornia ramosissima (Chenopodiaceae) from inland, naturally salt-contaminated habitats and anthropogenic salt-polluted sites in central Germany (Thuringia, Anhalt-Saxony) were analysed using random amplified polymorphic DNA (RAPD) markers to investigate the patterns of genetic variation. In both species, the genetic diversity observed in the younger, anthropogenic sites caused by potash mines during the last century was found to be not significantly lower than in the older, naturally salt-contaminated habitats. Therefore, it is speculated that the loss of genetic diversity caused by founder effects on the anthropogenic habitats was balanced by successive colonization events, actual gene flow between populations, or the rapid growth of populations on the secondary habitats after colonization. Analyses of molecular variance (amova) of the RAPD markers, neighbour-joining clustering of populations based on Reynolds' co-ancestry distances, and Mantel tests indicate that: (i) anthropogenic habitats were colonized independently; (ii) genetic differentiation among populations of S. ramosissima is more pronounced than in A. tripolium, which is considered to be mainly due to biological differences between the two species; and (iii) the geographical pattern of genetic diversity was considerably modulated by historical events and/or population genetic effects.  相似文献   

17.
Limited dispersal and connectivity in marine organisms can have negative fitness effects in populations that are small and isolated, but reduced genetic exchange may also promote the potential for local adaptation. Here, we compare the levels of genetic diversity and connectivity in the coral Montastraea cavernosa among both central and peripheral populations throughout its range in the Atlantic. Genetic data from one mitochondrial and two nuclear loci in 191 individuals show that M. cavernosa is subdivided into three genetically distinct regions in the Atlantic: Caribbean-North Atlantic, Western South Atlantic (Brazil) and Eastern Tropical Atlantic (West Africa). Within each region, populations have similar allele frequencies and levels of genetic diversity; indeed, no significant differentiation was found between populations separated by as much as 3000 km, suggesting that this coral species has the ability to disperse over large distances. Gene flow within regions does not, however, translate into connectivity across the entire Atlantic. Instead, substantial differences in allele frequencies across regions suggest that genetic exchange is infrequent between the Caribbean, Brazil and West Africa. Furthermore, markedly lower levels of genetic diversity are observed in the Brazilian and West African populations. Genetic diversity and connectivity may contribute to the resilience of a coral population to disturbance. Isolated peripheral populations may be more vulnerable to human impacts, disease or climate change relative to those in the genetically diverse Caribbean-North Atlantic region.  相似文献   

18.
During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species.  相似文献   

19.
Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects.  相似文献   

20.
M A Millar  D J Coates  M Byrne 《Heredity》2013,111(5):437-444
Historically rare plant species with disjunct population distributions and small population sizes might be expected to show significant genetic structure and low levels of genetic diversity because of the effects of inbreeding and genetic drift. Across the globe, terrestrial inselbergs are habitat for rich, often rare and endemic flora and are valuable systems for investigating evolutionary processes that shape patterns of genetic structure and levels of genetic diversity at the landscape scale. We assessed genetic structure and levels of genetic diversity across the range of the historically rare inselberg endemic Acacia woodmaniorum. Phylogeographic and genetic structure indicates that connectivity is not sufficient to produce a panmictic population across the limited geographic range of the species. However, historical levels of gene flow are sufficient to maintain a high degree of adaptive connectivity across the landscape. Genetic diversity indicates gene flow is sufficient to largely counteract any negative genetic effects of inbreeding and random genetic drift in even the most disjunct or smallest populations. Phylogeographic and genetic structure, a signal of isolation by distance and a lack of evidence of recent genetic bottlenecks suggest long-term stability of contemporary population distributions and population sizes. There is some evidence that genetic connectivity among disjunct outcrops may be facilitated by the occasional long distance dispersal of Acacia polyads carried by insect pollinators moved by prevailing winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号