首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure of the high-potential iron-sulfur protein (HiPIP) isolated from the phototrophic bacterium, Rhodocyclus tenuis, has been solved and refined to a nominal resolution of 1.5 A with a crystallographic R-factor of 17.3% for all measured X-ray data from 30 A to 1.5 A. It is the smallest of the HiPIP structures studied thus far with 62 amino acid residues. Crystals used in the investigation belonged to the space group P2(1) with unit cell dimensions of a = 36.7 A, b = 52.6 A, c = 27.6 A and beta = 90.8 degrees and contained two molecules per asymmetric unit. The structure was solved by a combination of multiple isomorphous replacement with two heavy-atom derivatives, anomalous scattering from the iron-sulfur cluster, symmetry averaging and solvent flattening. The folding motif for this HiPIP is characterized by one small alpha-helix, six Type I turns, an approximate Type II turn and one Type I' turn. As in other HiPIPs, the iron-sulfur cluster is co-ordinated by four cysteinyl ligands and exhibits a cubane-like motif. These cysteinyl ligands are all located in Type I turns. The hydrogen bonding around the metal cluster in the R. tenuis protein is similar to the patterns observed in the Chromatium vinosum and Ectothiorhodospira halophila HiPIPs. Several of the amino acid residues invariant in the previously determined C. vinosum and E. halophila structures are not retained in the R. tenuis molecule. There are 13 solvent molecules structurally conserved between the two R. tenuis HiPIP molecules in the asymmetric unit, some of which are important for stabilizing surface loops. Interestingly, while it is assumed that this HiPIP functions as a monomer in solution, the two molecules in the asymmetric unit pack as a dimer and are related to each other by an approximate twofold rotation axis.  相似文献   

2.
The 61-residue amino acid sequence of Rhodospirillum tenue, strain 2761, high-redox-potential ferredoxin (HiPIP) is GTNAAMRKAFNYQDTAKNGKCSGCAQFVPGASPTAAGGCKVIPGDNEIAPGGYCDAFIVKK. It differs from that of R. tenue strain 3761 by 16 amino acid substitutions plus two single-residue deletions. This 26% sequence difference is similar to that observed among separate species of chromatiaceae such as Chromatium vinosum, C. gracile, and Thiocapsa roseopersicina, and is suprising because there are no distinguishing microbiological characteristics separating these two R. tenue strains. The most interesting amino acid substitution in R. tenue 2761 HiPIP is Gly for Asn 45 (C. vinosum numbering). Besides the four cysteines required to bind the four iron-four sulfur cluster, only Tyr 19, Asn 45, and Gly 75 are absolutely conserved in the nine previously determined HiPIP sequences. If HiPIP is used as a measure of divergence of species, then R. tenue and C. vinosum are the most distant purple bacteria examined. Quite the opposite conclusion follows based on the sequences of the cytochromes c'. It is suggested that this anomaly is more likely owing to a change in function for HiPIP with subsequently rapid evolutionary change than to a relatively recent transfer of the cytochrome c' gene between species.  相似文献   

3.
The amino acid sequences of high-redox-potential ferredoxin (HiPIP) isozymes from Ectothiorhodospira halophila have been determined. These are: isozyme I, EPRAEDGHAHDYVNEAADPSHGRYQEGQLCENCAFWGEAVQDGWGRCTHPDFDEVLVKAEGWCSVYAPA S, and isozyme II, GLPDGVEDLPKAEDDHAHDYVNDAADTDHARFQEGQLCENCQFWVDYVNGWGYCQHPDFTDVLVRGEGW CSVYAPA. Isozyme II is the major form of HiPIP produced by the bacterium (65-80%) and is the most acidic of the known HiPIPs. The two isozymes are 72% identical to one another and require only a single residue deletion for alignment. Comparison of these HiPIPs with seven previously determined sequences revealed only 27% average identity. Both E. halophila HiPIP isozymes are likely to be functional since their sequences are equally distant from those of other species. The E. halophila HiPIP sequences show that H-bonding patterns recognized in Chromatium vinosum HiPIP are likely to be conserved and therefore cannot explain the unusually low redox potentials which have been reported.  相似文献   

4.
Circular dichroism and redox properties of high redox potential ferredoxins   总被引:2,自引:0,他引:2  
The circular dichroism (CD) spectra of 13 examples of high-potential iron-sulfur proteins (HiPIPs), a class of [4Fe-4S] ferredoxins, have been determined. In contrast to the proposal of Carter [Carter, C. W., Jr. (1977) J. Biol. Chem. 252, 7802-7811], no strict correlation between visible CD features and utilization of the [4Fe-4S]2+/[4Fe-4S]3+ oxidation levels was found. Although most HiPIPs have these features, the model requires their presence in all species. There is also no simple relationship between CD spectral features and the presence of conserved tyrosine-19. In addition, no apparent correlation between CD properties and oxidation-reduction potential could be detected. However, amino acid side chains in close contact to the iron-sulfur cluster appear to be important in modulating spectral and oxidation-reduction properties. In particular, the negative shoulder at 290 nm and negative maximum at 230 nm correlate with the presence of Trp-80 (Chromatium vinosum numbering). Two HiPIPs that do not have Trp at this position have positive bands at 290 and 230 nm. These bands in the Ectothiorhodospira halophila HiPIPs are apparently associated with Trp-49, which is located on the opposite side of the effective mirror plane of the cluster from Trp-80. The effect of pH on circular dichroism and redox potential in Thiocapsa roseopersicina HiPIP, which has a histidine at position 49, is consistent with the interaction of the side chain with the cluster. Despite specific differences in their CD spectra, the various HiPIPs studied show general similarity consistent with structural homology within this class of iron-sulfur proteins.  相似文献   

5.
The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr26 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, Ile, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr26 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.  相似文献   

6.
High-potential iron-sulfur protein (HiPIP) has recently been shown to function as a soluble mediator in photosynthetic electron transfer between the cytochrome bc1 complex and the reaction-center bacteriochlorophyll in some species of phototrophic proteobacteria, a role traditionally assigned to cytochrome c2. For those species that produce more than one high-potential electron carrier, it is unclear which protein functions in cyclic electron transfer and what characteristics determine reactivity. To establish how widespread the phenomenon of multiple electron donors might be, we have studied the electron transfer protein composition of a number of phototrophic proteobacterial species. Based upon the distribution of electron transfer proteins alone, we found that HiPIP is likely to be the electron carrier of choice in the purple sulfur bacteria in the families Chromatiaceae and Ectothiorhodospiraceae, but the majority of purple nonsulfur bacteria are likely to utilize cytochrome c2. We have identified several new species of phototrophic proteobacteria that may use HiPIP as electron donor and a few that may use cytochromes c other than c2. We have determined the amino acid sequences of 14 new HiPIPs and have compared their structures. There is a minimum of three sequence categories of HiPIP based upon major insertions and deletions which approximate the three families of phototrophic proteobacteria and each of them can be further subdivided prior to construction of a phylogenetic tree. The comparison of relationships based upon HiPIP and RNA revealed several discrepancies.  相似文献   

7.
The high-potential iron-sulfur protein (HiPIP) from Rhodospirillum tenue (strain 3761) shows only a weak (20-25%) sequence similarity to HiPIPs from Chromatium vinosum, Ectothiorhodospira halophila and Ectothiorhodospira vacuolata, including the strict conservation of only two of the twelve residues assumed to be in the 4Fe-4S cluster packing region [Tedro, S. M., Meyer, T. E. and Kamen, M. D. (1979) J. Biol. Chem. 254, 1495-1500]. In spite of these differences, the general range and distribution of hyperfine-shifted 1H-NMR peaks of oxidized and reduced R. tenue HiPIP resemble those of E. halophila HiPIP I [Krishnamoorthi, R., Markley, J. L., Cusanovich, M. A., Pryzycieki, C. T. and Meyer, T. E. (1986) Biochemistry 25, 60-67]. Temperature- and pH-dependence and longitudinal relaxation behavior were determined for hyperfine-shifted peaks of the oxidized protein. Tentative assignments of peaks to ligands and aromatic residues suggest the presence of common apoprotein-active-site interactions in these proteins. Differences occur in the pattern of paramagnetically shifted peaks attributed to hydrogens bonded to the 4Fe-4S cluster. Hyperfine-shifted peaks of R. tenue HiPIP are not perturbed by pH changes in the range 5-9. In contrast, those of the C. vinosum protein exhibit a pH-dependence of chemical shifts that has been attributed to the titration of His42 [Nettesheim, D. G., Meyer, T. E., Feinberg, B. A. and Otvos, J. D. (1983) J. Biol. Chem. 258, 8235-8239]. Since R. tenue HiPIP contains no histidine, the present observation confirms the above hypothesis.  相似文献   

8.
G Funatsu  M R Islam  Y Minami  K Sung-Sil  M Kimura 《Biochimie》1991,73(7-8):1157-1161
The amino acid sequences of eleven RIPs sequenced to date have been compared in the expectation that this would be useful in the location of functionally and/or structurally important sites of these molecules. In addition to several highly conserved hydrophobic amino acids, thirteen absolutely conserved residues have been found in ricin A-chain: Tyr21, Phe24, Arg29, Tyr80, Tyr123, Gly140, Ala165, Glu177, Ala178, Arg180, Glu208, Asn209 and Trp211. The role of these residues as well as of the C-terminal region have been discussed based on the results of chemical and enzymatic modifications, site-directed mutagenesis, and deletion studies.  相似文献   

9.
Proton NMR spectra of the oxidized and reduced forms of high-potential iron-sulfur proteins (HiPIPs) were recorded at 200 MHz. The proteins studied were the HiPIPs I and II from Ectothiorhodospira halophila and Ectothiorhodospira vacuolata. Hyperfine-shifted peaks in spectra of the oxidized proteins were assigned to some of the protons of the cysteinyl ligands and aromatic residues at the active site on the basis of their chemical shifts, longitudinal relaxation times, and temperature-dependent behavior. The cysteinyl C beta-H protons were found to resonate downfield (about 100 ppm) and the C alpha-H protons upfield (about-25 ppm). This hyperfine shift pattern is consistent with the observed isotropic shift being contact in origin; it probably results from a pi-spin-transfer mechanism. The large magnitudes of the chemical shifts of peaks assigned to aromatic residues suggest that these residues interact with the iron-sulfur cluster via pi-pi overlap. Some of the hyperfine-shifted peaks observed in water were found to disappear in 2H2O solution. Such resonances probably arise from exchange-labile hydrogens of amino acid residues directly hydrogen bonded to the iron-sulfur cluster. In the case of HiPIPs I and II from E. vacuolata, whose spectra are similar except for the number of such peaks, the relative number of hydrogen bonds inferred to be present in the oxidized and reduced proteins qualitatively explains the difference between their midpoint redox potentials. On the other hand, for E. halophila HiPIPs I and II, consideration of the inferred number of hydrogen bonds alone fails to predict the sign of the difference between their midpoint redox potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The amino acid composition and partial NH2-terminal amino acid sequence of the phospholipase A2 secreted by stimulated rat platelets were determined. The most predominant amino acid in the phospholipase A2 was cysteine followed by lysine, suggesting that it is a basic one. This finding is consistent with its high affinity to a cation exchange column. The NH2-terminal 24 amino acids were found to be as follows: X-Leu-Leu-Glu-Phe-Gly-Gln-Met-Ile-Leu-Phe-Lys-Thr-Gly-Lys-Arg-Ala-Asp- Val-Ser-Tyr-Gly-Phe-Tyr-Gly- The enzymes contains 5Phe, 8Met, 9Ile, 24Tyr, and 25Gly residues, all of which are conserved in the sequenced pancreatic phospholipase A2. This is the first report of the tentative characterization of a eukaryotic phospholipase A2, the cellular source of which is known, i.e., it does not originate from a venom or the pancreas.  相似文献   

11.
As part of a study of protein folding and stability, the three-dimensional structures of yeast iso-2-cytochrome c and a composite protein (B-2036) composed of primary sequences of both iso-1 and iso-2-cytochromes c have been solved to 1.9 A and 1.95 A resolutions, respectively, using X-ray diffraction techniques. The sequences of iso-1 and iso-2-cytochrome c share approximately 84% identity and the B-2036 composite protein has residues 15 to 63 from iso-2-cytochrome c with the rest being derived form the iso-1 protein. Comparison of these structures reveals that amino acid substitutions result in alterations in the details of intramolecular interactions. Specifically, the substitution Leu98Met results in the filling of an internal cavity present in iso-1-cytochrome c. Further substitutions of Val20Ile and Cys102Ala alter the packing of secondary structure elements in the iso-2 protein. Blending the isozymic amino acid sequences in this latter area results in the expansion of the volume of an internal cavity in the B-2036 structure to relieve a steric clash between Ile20 and Cys102. Modification of hydrogen bonding and protein packing without disrupting the protein fold is illustrated by the His26Asn and Asn63Ser substitutions between iso-1 and iso-2-cytochromes c. Alternatively, a change in main-chain fold is observed at Gly37 apparently due to a remote amino acid substitution. Further structural changes occur at Phe82 and the amino terminus where a four residue extension is present in yeast iso-2-cytochrome c. An additional comparison with all other eukaryotic cytochrome c structures determined to date is presented, along with an analysis of conserved water molecules. Also determined are the midpoint reduction potentials of iso-2 and B-2036 cytochromes c using direct electrochemistry. The values obtained are 286 and 288 mV, respectively, indicating that the amino acid substitutions present have had only a small impact on the heme reduction potential in comparison to iso-1-cytochrome c, which has a reduction potential of 290 mV.  相似文献   

12.
Rubredoxin (D.g. Rd) is a small non-heme iron-sulfur protein shown to function as a redox coupling protein from the sulfate reducing bacteria Desulfovibrio gigas. The protein is generally purified from anaerobic bacteria in which it is thought to be involved in electron transfer or exchange processes. Rd transfers an electron to oxygen to form water as part of a unique electron transfer chain, composed by NADH:rubredoxin oxidoreductase (NRO), rubredoxin and rubredoxin:oxygen oxidoreductase (ROO) in D.g. The crystal structure of D.g. Rd has been determined by means of both a Fe single-wavelength anomalous dispersion (SAD) signal and the direct method, and refined to an ultra-high 0.68 A resolution, using X-ray from a synchrotron. Rd contains one iron atom bound in a tetrahedral coordination by the sulfur atoms of four cysteinyl residues. Hydrophobic and pi-pi interactions maintain the internal Rd folding. Multiple conformations of the iron-sulfur cluster and amino acid residues are observed and indicate its unique mechanism of electron transfer. Several hydrogen bonds, including N-H...SG of the iron-sulfur, are revealed clearly in maps of electron density. Abundant waters bound to C-O peptides of residues Val8, Cys9, Gly10, Ala38, and Gly43, which may be involved in electron transfer. This ultrahigh-resolution structure allows us to study in great detail the relationship between structure and function of rubredoxin, such as salt bridges, hydrogen bonds, water structures, cysteine ligands, iron-sulfur cluster, and distributions of electron density among activity sites. For the first time, this information will provide a clear role for this protein in a strict anaerobic bacterium.  相似文献   

13.
The molecular structure of a high potential iron-sulfur protein (HiPIP) isolated from the purple photosynthetic bacterium, Ectothiorhodospira halophila strain BN9626, has been solved by x-ray diffraction analysis to a nominal resolution of 2.5 A and refined to a crystallographic R value of 18.4% including all measured x-ray data from 30.0- to 2.5-A resolution. Crystals used in the investigation contained two molecules/asymmetric unit and belonged to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. An interpretable electron density map, obtained by combining x-ray data from one isomorphous heavy atom derivative with non-crystallographic symmetry averaging and solvent flattening, clearly showed that this high potential iron-sulfur protein contains 71 amino acid residues, rather than 70 as originally reported. As in other bacterial ferredoxins, the [4Fe-4S] cluster adopts a cubane-like conformation and is ligated to the protein via four cysteinyl sulfur ligands. The overall secondary structure of the E. halophila HiPIP is characterized by a series of Type I and Type II turns allowing the polypeptide chain to wrap around the [4Fe-4S] prosthetic group. The hydrogen bonding pattern around the cluster is nearly identical to that originally observed in the 85-amino acid residue Chromatium vinosum HiPIP and consequently, the 240 mV difference in redox potentials between these two proteins cannot be simply attributed to hydrogen bonding patterns alone.  相似文献   

14.
15.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

16.
The tat gene of HIV-1 is a potent trans-activator of gene expression from the HIV long terminal repeat (LTR). To define the functionally important regions of the product of the tat gene (Tat) of HIV-1, deletion, linker insertion and single amino acid substitution mutants within the Tat coding region of strain SF2 were constructed. The effect of these mutations on trans-activation was assessed by measuring the expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene linked to the HIV-LTR. These studies have revealed that four different domains of the protein that map within the N-terminal 56 amino acid region are essential for Tat function. In addition to the essential domains, an auxiliary domain that enhances the activity of the essential region has also been mapped between amino acid residues 58 and 66. One of the essential domains maps in the N-terminal 20 amino acid region. The other three essential domains are highly conserved among the various strains of HIV-1 and HIV-2 as well as simian immunodeficiency virus (SIV). Of the conserved domains, one contains seven Cys residues and single amino acid substitutions for several Cys residues indicate that they are essential for Tat function. The second conserved domain contains a Lys X Leu Gly Ile X Tyr motif in which the Lys residue is essential for trans-activation and the other residues are partially essential. The third conserved domain is strongly basic and appears to play a dual role. Mutants lacking this domain are deficient in trans-activation and in efficient targeting of Tat to the nucleus and nucleolus. The combination of the four essential domains and the auxiliary domain contribute to the near full activity observed with the 101 amino acid Tat protein.  相似文献   

17.
The temperature dependence of the mean square displacement of the (57)Fe nuclei due to motion faster than 100 ns are measured by temperature-dependent M?ssbauer spectroscopy for oxidized and reduced HiPIPs from Ectothiorhodospira halophila, Chromatium vinosum WT and a Cys77Ser mutant. The behaviour is interpretable in the frame of the general model of protein dynamics distinguishing two temperature intervals. The character of harmonic and quasi-diffusional modes in HiPIPs is discussed. Dynamic information obtained from M?ssbauer spectroscopy and Fe K-edge EXAFS are compared. Structure dynamics of the iron-sulfur cluster in the partially unfolded reduced HiPIP from C. vinosum was investigated by M?ssbauer spectroscopy and EXAFS, indicating an intact metal centre and a protein backbone with a largely collapsed secondary structure. The role of the cofactor during protein folding is discussed. Differences in the dynamics between the native protein and the molten globule are found at physiological temperatures only. The structure and dynamic behaviour of the [Fe(4)S(4)]Cys(3)Ser cluster in the Cys77Ser mutant of the HiPIP from C. vinosum are analysed. The temperature dependence of electron relaxation in oxidized HiPIPs is investigated by M?ssbauer spectroscopy and analysed theoretically, considering spin-spin and spin-lattice relaxation. The latter consists of contributions from direct phonon bottleneck and Orbach mechanisms. The data agree with former pulsed EPR results. Orbach relaxation is interpreted as due to transitions between electronic isomers of oxidized HiPIPs. With this interpretation, the energetic difference between both isomers equals the energy gap estimated from the temperature dependence of the Orbach relaxation.  相似文献   

18.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

19.
Stefin A, an intracellular inhibitor of cysteine proteinases, is expressed most abundantly in epithelial cells and in cells of lymphatic origin. In order to study its role in normal and pathological conditions we have prepared and characterized monoclonal antibodies against recombinant stefin A. Two high affinity monoclonal antibodies (mAbs) (A22 and C52) were tested for binding to free and papain-complexed stefin A and to a chimeric inhibitor, consisting of 61 amino acid residues of stefin A and 37 carboxy-terminal residues of stefin B. mAb A22 recognized not only free stefin A but also stefin A in complex with papain. The mAbs were further tested for their cross-reactivity against stefin A and B isolated from different mammalian species. On the basis of sequence similarity and tertiary structure of human stefin A we have prepared three mutants - Glu33Lys, Asp61Gly and Asn62Tyr and their reactivity with the mAbs was tested. The binding affinities of mAb A22 for the Asp61Gly and Asn62Tyr mutants were significantly lower, indicating thatthe two amino acids are part of the stefin A epitope recognized by A22. The binding of both mAbs to the mutants Gly4Arg and Gly4Glu was comparable to wild-type stefin A.  相似文献   

20.
Gly6 (vertebrate numbering system) is an evolutionarily invariant amino acid located in an electron-dense region of cytochrome c. Serine, cysteine, and aspartic acid replacements of Gly6 abolished yeast iso-1-cytochrome c function, presumably by destabilizing the mature forms of the altered proteins (1). Here we report that genetic reversion analysis of these mutants has uncovered a single base-pair substitution, encoding an Asn52----Ile replacement, that suppresses all three position 6 defects, as well as a Gly6....Gly29----Ser6....Ser29 double replacement. In each case the suppressor restored at least partial function to the altered iso-1-cytochromes c, with the Sera6....Ile52 protein being nearly indistinguishable from the normal protein. The suppressor also affected otherwise normal iso-1-cytochrome c, enhancing the in vivo amount of the protein by about 20%. While this work was in progress, Das et al. (1989, Proc. Natl. Acad. Sci. USA 86, 496-499) uncovered Ile52 as a suppressor of single Gly29 and His33 replacements in iso-1-cytochrome c. The ability of Ile52 to suppress amino acid replacements at three different sites, and its effect in isolation from the primary mutations, defines Ile52 as a global suppressor of specific iso-1-cytochrome c structural defects. These data suggest that position 52 plays a critical role in the folding and/or stability of iso-1-cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号