首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Appropriate activation of naive CD8(+) T cells depends on the coordinated interaction of these cells with professional APC that present antigenic peptides in the context of MHC class I molecules. It is accepted that dendritic cells (DC) are efficient in activating naive T cells and are unique in their capacity to prime CD8(+) T cell responses against exogenous cell-associated Ags. Nevertheless, it is unclear whether epitopes, derived from endogenously synthesized proteins and presented by MHC class I molecules on the surface of other APC including B cells and macrophages, can activate naive CD8(+) T cells in vivo. By infecting transgenic CD11c-DTR/GFP mice that allow conditional depletion of DC with lymphocytic choriomeningitis virus (LCMV), which infects all types of APC and elicits a vigorous CTL response, we unambiguously show that priming of LCMV-specific CD8(+) T cells is crucially dependent on DC, despite ample presence of LCMV-infected macrophages and B cells in secondary lymphoid organs.  相似文献   

2.
Alveolar macrophages and newly recruited monocytes are targets of infection by Mycobacterium tuberculosis. Therefore, we examined the expression of interferon regulatory factor 1 (IRF-1), which plays an important role in host defense against M. tuberculosis, in undifferentiated and differentiated cells. Infection induced IRF-1 in both. IRF-1 from undifferentiated, uninfected monocytic cell lines was modified during extraction to produce specific species that were apparently smaller than intact IRF-1. After infection by M. tuberculosis or differentiation, intact IRF-1 was recovered. Subcellular fractions were assayed for the ability to modify IRF-1 or inhibit its modification. A serine protease on the cytoplasmic surface of an organelle or vesicle in the "lysosomal/mitochondrial" fraction from undifferentiated cells was responsible for the modification of IRF-1. Thus, the simplest explanation of the modification is cleavage of IRF-1 by the serine protease. Recovery of intact IRF-1 correlated with induction of a serine protease inhibitor that was able to significantly reduce the modification of IRF-1. The inhibitor was present in the cytoplasm of M. tuberculosis-infected or -differentiated cells. It is likely that induction of both IRF-1 and the serine protease inhibitor in response to infection by M. tuberculosis represent host defense mechanisms.  相似文献   

3.
Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.  相似文献   

4.
Retrovirus infection of murine fibroblasts was found to alter the expression of major histocompatibility complex (MHC) antigens. Fibroblasts infected with Moloney murine leukemia virus (M-MuLV) exhibited up to a 10-fold increase in cell surface expression of all three class I MHC antigens. Increases in MHC expression resulted in the increased susceptibility of M-MuLV-infected cells to lysis by allospecific cytotoxic T lymphocytes (CTL). M-MuLV appears to exert its effect at the genomic level, because mRNA specific for class I antigens, as well as beta 2-microglobulin, show a fourfold increase. Fibroblasts infected with the Moloney sarcoma virus (MSV):M-MuLV complex show no increase in MHC antigen expression or class I mRNA synthesis, suggesting that co-infection with MSV inhibits M-MuLV enhancement of MHC gene expression. Quantitative differences in class I antigen expression on virus-infected cells were also found to influence the susceptibility of infected cells to lysis by H-2-restricted, virus-specific CTL. Differential lysis of infected cells expressing varied levels of class I antigens by M-MuLV-specific bulk CTL populations and CTL clones suggests that individual clones may have different quantitative requirements for class I antigen expression. The MSV inhibition of MHC expression could be reversed by interferon-gamma. Treatment of MSV:M-MuLV-infected fibroblasts with interferon-gamma increased their susceptibility to lysis by both allogeneic and syngeneic CTL. The data suggest that interferon-gamma may function in the host's immune response to viral infections by enhancing MHC antigen expression, thereby increasing the susceptibility of virus-infected cells to lysis by H-2-restricted, virus-specific CTL.  相似文献   

5.
The mechanism of lysis by in vivo-induced cytotoxic T lymphocytes (CTL) was examined with virus-specific CTL from mice infected with lymphocytic choriomeningitis virus (LCMV). LCMV-induced T cells were shown to have greater than 10 times the serine esterase activity of T cells from normal mice, and high levels of serine esterase were located in the LCMV-induced CD8+ cell population. Serine esterase was also induced in purified T-cell preparations isolated from mice infected with other viruses (mouse hepatitis, Pichinde, and vaccinia). In contrast, the interferon inducer poly(I.C) only marginally enhanced serine esterase in T cells. Serine esterase activity was released from the LCMV-induced T cells upon incubation with syngeneic but not allogeneic LCMV-infected target cells. Both cytotoxicity and the release of serine esterase were calcium dependent. Serine esterase released from disrupted LCMV-induced T cells was in the form of the fast-sedimenting particles, suggesting its inclusion in granules. Competitive substrates for serine esterase blocked killing by LCMV-specific CTL, but serine esterase-containing granules isolated from LCMV-induced CTL, in contrast to granules isolated from a rat natural killer cell tumor line, did not display detectable hemolytic activity. Fragmentation of target cell DNA was observed during the lytic process mediated by LCMV-specific CTL, and the release of the DNA label [125I]iododeoxyuridine from target cells and the accompanying fragmentation of DNA also were calcium dependent. These data support the hypothesis that the mechanism of killing by in vivo-induced T cells involves a calcium-dependent secretion of serine esterase-containing granules and a target cell death by a process involving nuclear degradation and DNA fragmentation.  相似文献   

6.
We have found that CD11b, a cell surface integrin of macrophages, granulocytes, and NK cells, is expressed by a subset of CD8+ T cells that include both the active virus-specific CTL and the virus-specific memory CTL populations. CD8+CD11b+ cells comprise less than 3% of naive mouse splenocytes, but after lymphocytic choriomeningitis virus (LCMV) infection increase by 9- to 12-fold by the peak (day 8) of the virus-specific CTL response. Depletion of day-8 splenocytes with anti-Mac-1 and C' or enrichment by sorting for CD11b+ or CD8+CD11b+ spleen cells demonstrated that LCMV-specific CTL are CD11b+. The CD11b+ subpopulation also contained the bulk of the IL-2-responsive CD8+ cells. MEL-14, a homing marker down-regulated on activated T cells, was down-regulated on the majority of CD8+ cells that became CD11b+. Less than 1% of LCMV-immune splenic lymphocytes expressed CD11b. Antibody and C' depletion of this population severely impaired the ability of immune splenocytes to respond to in vitro secondary stimulation with LCMV-infected peritoneal macrophages, but did not affect the generation of a primary allospecific CTL response in MLC. Mixing of CD8-depleted and CD11b-depleted LCMV-immune splenocytes failed to restore the ability of these cells to mount a virus-specific memory CTL response, indicating that a cell coexpressing CD8 and CD11b is essential for this response. As determined by limiting dilution analysis, the precursors for the LCMV-specific memory CTL response were enriched in the CD11b+ population of LCMV-immune splenocytes. CD11b stained far fewer CD8+ splenocytes from naive mice than did CD44 (Pgp-1), and among immune splenocytes it identified a small subpopulation of CD44hi cells, indicating that CD11b may be the best single marker available for discriminating between naive and memory CD8+ T cells.  相似文献   

7.
Class I molecules of the MHC bind foreign and endogenous peptides allowing recognition by the TCR on CTL. The recognition and killing of cells infected with lymphocytic choriomeningitis virus (LCMV) depends on the recognition of LCMV peptides bound to class I MHC. Mutations in class I MHC molecules have enabled the delineation of regions in the class I molecule important for binding peptides and for interaction with the TCR. We have constructed a library of class I mutants using saturation mutagenesis and report a phenotypic change resulting from a single amino acid substitution that results in the heteroclitic (increased) killing of LCMV-infected cells. This amino acid change, asparagine to serine at position 30, is in a conserved region of the class I molecule contacting the alpha 3 domain. This mutation does not result in increased expression of the class I molecule on the cell surface, does not affect the binding of CD8, and does not affect allogeneic recognition. Cold target experiments show that this heteroclitic killing is due to increased recognition by CTL. These data point toward a critical function for this region of the class I molecule in the binding of peptides or their presentation to CTL.  相似文献   

8.
Impairment of MHC class I Ag processing is a commonly observed mechanism that allows viruses and tumors to escape immune destruction by CTL. The peptide transporter TAP that is responsible for the delivery of MHC class I-binding peptides into the endoplasmic reticulum is a pivotal target of viral-immune evasion molecules, and expression of this transporter is frequently lost in advanced cancers. We recently described a novel population of CTL that intriguingly exhibits reactivity against such tumor-immune escape variants and that recognizes self-peptides emerging at the cell surface due to defects in the processing machinery. Investigations of this new type of CTL epitopes are hampered by the lack of an efficient inhibitor for peptide transport in mouse cells. In this article, we demonstrate that the varicellovirus protein UL49.5, in contrast to ICP47 and US6, strongly impairs the activity of the mouse transporter and mediates degradation of mouse TAP1 and TAP2. Inhibition of TAP was witnessed by a strong reduction of surface MHC class I display and a decrease in recognition of conventional tumor-specific CTL. Analysis of CTL reactivity through the nonclassical molecule Qa-1(b) revealed that the presentation of the predominant leader peptide was inhibited. Interestingly, expression of UL49.5 in processing competent tumor cells induced the presentation of the new category of peptides. Our data show that the varicellovirus UL49.5 protein is a universal TAP inhibitor that can be exploited for preclinical studies on CTL-based immune intervention.  相似文献   

9.
Although CTL and polymorphic, classical MHC class I molecules have well defined roles in the immune response against tumors, little is currently known regarding the participation of nonpolymorphic, nonclassical MHC class I in antitumor immunity. Using an MHC class I-deficient melanoma as a model tumor, we demonstrate that Q9, a murine MHC class Ib molecule from the Qa-2 family, expressed on the surface of tumor cells, protects syngeneic hosts from melanoma outgrowth. Q9-mediated protective immunity is lost or greatly diminished in mice deficient in CTL, including beta(2)-microglobulin knockout (KO), CD8 KO, and SCID mice. In contrast, the Q9 antitumor effects are not detectably suppressed in CD4 KO mice with decreased Th cell activity. Killing by antitumor CTL in vitro is Q9 specific and can be blocked by anti-Q9 and anti-CD8 Abs. The adaptive Q9-restricted CTL response leads to immunological memory, because mice that resist the initial tumor challenge reject subsequent challenges with less immunogenic tumor variants and show expansion of CD8(+) T cell populations with an activated/memory CD44(high) phenotype. Collectively, these studies demonstrate that a MHC class Ib molecule can serve as a restriction element for antitumor CTL and mediate protective immune responses in a syngeneic setting.  相似文献   

10.
To identify genes with pluripotent state-specific expression in embryonic stem (ES) cells, we compared gene expression profiles between undifferentiated and differentiated mouse ES cells using DNA microarrays. Among the numerous genes identified, we focused on dual specificity phosphatase 6 (DUSP6), which had previously been shown to be expressed in undifferentiated human ES cells. We have identified and characterized a regulatory enhancer that we have termed PEDRE that controls pluripotent state-specific expression of DUSP6. This 82-base pair enhancer overlaps with, but is distinct from, a recently identified regulatory element that is regulated by the FGF-ERK pathway. The sequence of PEDRE is 100% identical between mouse and human DUSP6, suggesting that the molecular basis of DUSP6 gene expression in undifferentiated state of ES cells is highly conserved during evolution.  相似文献   

11.
12.
Progress towards developing vaccines that can stimulate an immune response against growing tumours has involved the identification of the protein antigens associated with a given tumour type. Epitope mapping of tumour antigens for HLA class I- and class II-restricted binding motifs followed by immunization with these peptides has induced protective immunity in murine models against cancers expressing the antigen. MHC class I molecules presenting the appropriate peptides are necessary to provide the specific signals for recognition and killing by cytotoxic T cells (CTL). The principle mechanism of tumour escape is the loss, downregulation or alteration of HLA profiles that may render the target cell resistant to CTL lysis, even if the cell expresses the appropriate tumour antigen. In human tumours HLA loss may be as high as 50%, inferring that a reduction in protein levels might offer a survival advantage to the tumour cells. Alternatively, MHC loss may render tumour cells susceptible to natural killer cell-mediated lysis because they are known to act as ligands for killer inhibitory receptors (KIRs). We review the molecular features of MHC class I and class II antigens and discuss how surface MHC expression may be regulated upon cellular transformation. In addition, selective loss of MHC molecules may alter target tumour cell susceptibility to lymphocyte killing. The development of clinical immunotherapy will need to consider not only the expression of relevant CTL target MHC proteins, but also HLA inhibitory to NK and T cells. Received: 20 March 1999 / Accepted: 3 May 1999  相似文献   

13.
14.
This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation.  相似文献   

15.
DNA-based vaccines generate potent CTL responses. The mechanism of T cell stimulation has been attributed to plasmid-transfected dendritic cells. These cells have also been shown to express plasmid-encoded proteins and to become activated by surface marker up-regulation. However, the increased surface expression of CD40 and B7 on these dendritic cells is insufficient to overcome the need for MHC class II-restricted CD4(+) T cell help in the priming of a CTL response. In this study, MHC class II(-/-) mice were unable to generate a CTL response following DNA immunization. This deficit in CTL stimulation by MHC class II-deficient mice was only modestly restored with CD40-activating Ab, suggesting that there were other elements provided by MHC class II-restricted T cell help for CTL induction. CTL activity was also augmented by coinjection with a vector encoding the costimulatory ligand B7.1, but not B7.2. These data indicate that dendritic cells in plasmid DNA-injected mice require conditioning signals from MHC class II-restricted T cells that are both CD40 dependent and independent and that there are different roles for costimulatory molecules that may be involved in inducing optimal CTL activity.  相似文献   

16.
CTLs can acquire MHC class I-peptide complexes from their target cells, whereas CD4(+) T cells obtain MHC class II-peptide complexes from APCs in a TCR-specific manner. As a consequence, Ag-specific CTL can kill each other (fratricide) or CD4(+) T cells become APCs themselves. The purpose of the acquisition is not fully understood and may be either inhibition or prolongation of an immunological response. In this study, we demonstrate that human CD4(+) Th cells are able to capture membrane fragments from APC during the process of immunological synapse formation. The fragments contain not only MHC class II-peptide complexes but also MHC class I-peptide complexes, rendering these cells susceptible to CTL killing in an Ag-specific manner. The control of CD4(+) Th cells by Ag-specific CTL, therefore, maybe another mechanism to regulate CD4(+) T cell expansion in normal immune responses or cause immunopathology during the course of viral infections such as HIV.  相似文献   

17.
Human proteinase inhibitor 9 (PI-9/serpinB9) and the murine ortholog, serine proteinase inhibitor 6 (SPI-6/serpinb9) are members of a family of intracellular serine proteinase inhibitors (serpins). PI-9 and SPI-6 expression in immune-privileged cells, APCs, and CTLs protects these cells against the actions of granzyme B, and when expressed in tumor cells or virally infected hepatocytes, confers resistance to killing by CTL and NK cells. The present studies were designed to assess the existence of any correlation between granzyme B activity in intrahepatic lymphocytes and induction of hepatic SPI-6 expression. To this end, SPI-6, PI-9, and serpinB9 homolog expression was examined in response to IFN-alpha treatment and during in vivo adenoviral infection of the liver. SPI-6 mRNA expression increased 10- to 100-fold in the liver after IFN-alpha stimulation and during the course of viral infection, whereas no significant up-regulation of SPI-8 and <5-fold increases in other PI-9/serpinB9 homolog mRNAs was observed. Increased SPI-6 gene expression during viral infection correlated with influxes of NK cells and CTL. Moreover, IFN-alpha-induced up-regulation of hepatocyte SPI-6 mRNA expression was not observed in NK cell-depleted mice. Additional experiments using genetically altered mice either deficient in perforin or unable to process or express granzyme B indicated that SPI-6 is selectively up-regulated in hepatocytes in response to infiltration of the liver by NK cells that express perforin and enzymatically active granzyme B.  相似文献   

18.
19.
Target cells of cytotoxic T lymphocytes (CTL) directed to the individual structural proteins (except for the large polymerase (L) protein) of rabies virus were established by expressing only the respective protein in murine neuroblastoma (NA) and murine macrophage (J774-1) cell lines. Mice infected with the ERA strain of rabies virus developed CTL responses to all of these rabies virus proteins. The cytotoxic activity was abrogated by pretreatment of the effector cells with anti-CD8 monoclonal antibody (MAb) and complement but not with anti-CD4 MAb. Cell lysis by CTL was blocked in the presence of anti-major histocompatibility complex (MHC) class 1 antibodies in J774-1 cell lines. Rabies virus-infected cells express these proteins at the surface, which can be recognized and lysed by the respective CTL. Mice immunized with β-propiolactone-inactivated virus induced a CTL response against glycoprotein but not against internal viral components. This assay system might be useful for further analysis of the possible contribution of these proteins in the cell-mediated immune protection against rabies.  相似文献   

20.
Though ingested Ag are readily degraded into peptides within endocytic vesicles, APC usually cannot present these fragments to CD8 cells. Despite this generalization, some exceptions have been noted. For example, murine macrophage targets readily process heat-killed Listeria monocytogenes (HKLM) into a form recognizable by immune CD8 CTL. Using an assay of Listeria-specific, CD8-mediated cytotoxicity to quantitate Ag presentation by C57Bl/6 macrophage targets, we have examined some of the cellular requirements for this form of Ag processing. To assess whether the physical form of the Ag is an important determinant of processing, we compared the ability of macrophages to present intact HKLM, fractionated L. monocytogenes (LM) membranes, and octyl-beta-d-thioglucopyranoside-solubilized extracts of LM membranes. Macrophages presented each Ag form in a similar manner indicating that processing is not critically dependent on the presence of intact bacteria or even on the introduction of Ag in a particulate form. To gain insight into the metabolic requirements for Ag processing, we examined the effects of several inhibitors. As might be expected, listerial Ag presentation was blocked by brefeldin, a known inhibitor of the endogenous pathway of Ag processing. LM Ag presentation, however, was also blocked by inhibitors of endosomal acidification (chloroquine, ammonium chloride, and monensin) and by the acid protease inhibitor pepstatin A, suggesting that endocytic processing may play an essential role in CD8 recognition of this Ag. To formally establish that this pattern of exogenous Ag processing requires the presence of a class I MHC product, we demonstrated that beta-2 microglobulin-deficient macrophages, which lack class I MHC product expression, cannot present HKLM to CD8 cells. However, we could not block Ag presentation by incubating macrophages with monoclonal anti-H-2K or H-2D antibodies, suggesting that LM Ag presentation may be mediated by some other class I MHC product. Additional characterization of this pathway of Ag presentation is warranted in view of its possible role in initiating CD8-mediated immunity against microbial Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号