首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When cells of Bacillus stearothermophilus, strain NCA 1503, were grown in tryptone starch broth and subsequently transferred to tris buffer, a fraction of the cells: rapidly died in ttie buffer. This fraction increased with increasing content of calcium chloride in the growth medium. The' addition of sodium, potassium or magnesium chloride to the growth medium had no such effect. The rapid dying of the cells in tris buffer was associated with a leakage of organic material and calcium ions from the cells. The results obtained are probably caused by a damage to the osmotic barrier of the cells during their contact with the buffer. Observations: made during the present investigation and a previous one (Ljunger 1970) indicate that the heat resistance of thermophilic bacteria depends on the maintenance of a high intracellular concentration of free calcium ions.  相似文献   

2.
The calcium transport in resting vegetative cells of Bacillus stearothermophilus was studied by determining the retention of 45Ca in a membrane filter assay. The kinetics of death by vegetative cells, when suspended in buffer at 55°C, was also investigated. The calcium influx required the presence of an energy source, e.g. glucose-1-phosphate and the system exhibited saturation kinetics. The requirements for survival of the thermophilic cells reflected those of the calcium transport system. Thus, cells treated with nitrogen gas showed an increased thermal stability and a decreased efflux of calcium. The initial velocity of calcium influx correlated linearly with the survival of the cells after 1 min heating at 55° C. Lanthanum inhibited calcium influx and reduced survival. Magnesium did not inhibit calcium influx but could replace calcium as a stabilizing agent. The results suggest that the thermophilic cells are not intrinsically heat stable but survive due to a high cellular concentration of divalent ions.Abbreviations CFU colony forming units - CPM counts per min - NCA National canners association - CCCP carbonyl cyanide m-chlorophenylhydrazone - PMS phenazine methosulfate  相似文献   

3.
The growth lag of Escherichia coli at 45°C was reduced by the addition of sodium, potassium, magnesium and calcium ions to the growth medium. A method to quantitatively determine the lag-reducing effect of these ions was developed. The results obtained showed that equivalent amounts of the ions produced the same reduction of the growth lag. According to the results of plasmolysis experiments cells of E. coli suspended in peptone broth were permeable to all four ions. The course of plasmolysis and subsequent deplasmolysis was registered as changes in the cells' ability to scatter light. The heat stability of catalase from E. coli was increased by addition of the four ions. This was observed in experiments with intact cells and with a crude cell-free preparation of catalase. The results of our experiments are most easily explained by assuming a stabilizing effect of the ions tested on the intracellular bacterial proteins.  相似文献   

4.
A thermophilic bacteriophage was isolated from soil. Heat inactivation of this phage, suspended in tryptone starch broth at 65°C and 70°C, was found to be a monomolecular reaction. The phage was more heat stable in tryptone broth than in tris buffer. When the tris buffer was supplemented with calcium or magnesium ions, the survival percentage increased from 0.0 to 18.0 after two hours of heating at 65°C. The addition of sodium or potassium ions to the tris buffer had no significant effect. Equimolar solutions of calcium and magnesium chloride had the same effect on the heat stability of the phage. Maximum stability was attained in 2.5 mM solutions of these salts, and a further increase in the concentration up to 10.0 mM did not increase the percentage of surviving phages.  相似文献   

5.
In order to investigate the mechanism of microbial growth at elevated temperatures, it was tried to isolate different thermophilic microorganisms from wide origins, such as soils, composts, manure piles and hot spring waters. As the result, 5 strains of extremely thermophilic bacteria, the maximum, the optimum and the minimum temperatures for growth of which were 80, 70~75, and 40°C, respectively, were isolated from Izu-Atagawa hot spring and Beppu hot springs. These bacteria were gram-negative, yellow-pigmented, non-motile and non-sporulating rods of 0.5~0.7 μ in diameter and 2~5 μ in length. They were heterotrophs requiring several amino acids (such as glutamate, aspartate, et al.) and vitamins (such as biotin, folic acid and p-aminobenzoic acid) and grew well at neutral to slight alkali pH. The content of GC pairs of DNAs from the 5 strains was 69~70%, and this seemed to be one of the highest values in bacteria so far known. Among the 5 strains, strain AT–62 was named as Thermus flavus sp. n. AT–62 from its morphological and physiological characteristics. Comparison between Thermus flavus and other extremely thermophilic bacteria as Thermus aquaticus and Flavobacterium thermophilum is described and discussed in reference to classification of extremely thermophilic bacteria.  相似文献   

6.
The dynamic nature of thermophily   总被引:6,自引:0,他引:6  
1. Evidence for a close relation between thermophilic and mesophilic bacteria is discussed. 2. It is shown that in the absence of nutrients thermophilic bacteria at 55°C. die as rapidly as mesophilic bacteria, and that enzyme systems of the thermophils are rapidly inactivated at this temperature. 3. It is concluded that the thermophils can live at high temperatures because they can synthesize enzymes and other cellular constituents faster than these are destroyed by heat. 4. In order to account for this great synthetic capacity at high temperatures, and for the high minimum temperatures observed for many thermophils, it is postulated that these organisms have a higher temperature coefficient of enzyme synthesis than mesophils.  相似文献   

7.
The thermophilic bacterium Rhodothermus marinus produces a modular xylanase (Xyn10A) consisting of two N-terminal carbohydrate-binding modules (CBMs), followed by a domain of unknown function, and a catalytic module flanked by a fifth domain. Both Xyn10A CBMs bind calcium ions, and this study explores the effect of these ions on the stability of the full-length enzyme. Xyn10A and truncated forms thereof were produced and their thermostabilities were evaluated under different calcium loads. Studies performed using differential scanning calorimetry showed that the unfolding temperature of the Xyn10A was significantly dependent on the presence of Ca2+, and that the third domain of the enzyme binds at least one Ca2+. Thermal inactivation studies confirmed the role of tightly bound Ca2+ in stabilizing the enzyme, but showed that the presence of a large excess of this ion results in reduced kinetic stability. The truncated forms of Xyn10A were less stable than the full-length enzyme, indicative of module/domain thermostabilizing interactions. Finally, possible roles of the two domains of unknown function are discussed in the light of this study. This is the first report on the thermostabilizing role of calcium on a modular family 10 xylanase that displays multiple calcium binding in three of its five domains/modules.Communicated by G. Antranikian  相似文献   

8.
Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.  相似文献   

9.
Aims: This study aimed at isolating thermophilic bacteria that utilize cheap carbon substrates for the economically feasible production of poly(3‐hydroxybutyrate), poly(3HB), at elevated temperatures. Methods and Results: Thermophilic bacteria were enriched from an aerobic organic waste treatment plant in Germany, and from hot springs in Egypt. Using the viable colony staining method for hydrophobic cellular inclusions with Nile red in mineral salts medium (MSM) containing different carbon sources, six Gram‐negative bacteria were isolated. Under the cultivation conditions used in this study, strains MW9, MW11, MW12, MW13 and MW14 formed stable star‐shaped cell‐aggregates (SSCAs) during growth; only strain MW10 consisted of free‐living rod‐shaped cells. The phylogenetic relationships of the strains as derived from 16S rRNA gene sequence comparisons revealed them as members of the Alphaproteobacteria. The 16S rRNA gene sequences of the isolates were very similar (>99% similarity) and exhibited similarities ranging from 93 to 99% with the most closely related species that were Chelatococcus daeguensis, Chelatococcus sambhunathii , Chelatococcus asaccharovorans, Bosea minatitlanensis, Bosea thiooxidans and Methylobacterium lusitanum. Strains MW9, MW10, MW13 and MW14 grew optimally in MSM with glucose, whereas strains MW11 and MW12 preferred glycerol as sole carbon source for growth and poly(3HB) accumulation. The highest cell density and highest poly(3HB) content attained were 4·8 g l?l (cell dry weight) and 73% (w/w), respectively. Cells of all strains grew at temperatures between 37 and 55°C with the optimum growth at 50°C. Conclusions: New PHA‐accumulating thermophilic bacterial strains were isolated and characterized to produce poly(3HB) from glucose or glycerol in MSM at 50°C. SSCAs formation was reported during growth. Significance and Impact of the Study: To the best of our knowledge, this is the first report on the formation of SSCAs by PHA‐accumulating bacteria and also by thermophilic bacteria. PHA‐producing thermophiles can significantly reduce the costs of fermentative PHA production.  相似文献   

10.
Summary An alkalophilic Bacillus sp. no. AH-101, which produced extremely thermostable alkaline protease, was isolated among 200 soil samples. The enzyme production reached its maximum level of 1500 units/ml after about 24 h in alkaline medium (pH 9.5). The enzyme was most active toward casein at pH 12–13 and stable to 10 min incubation at 60° C from pH 5–13. Calcium ions were effective in stabilizing the enzyme especially at higher temperatures. The optimum and stable temperatures were about 80° C and below about 70° C respectively in the presence of 5 mM calcium ions. The enzyme was completely inactivated by phenylmethane sulphonyl fluoride, but little affected by ethylenediaminetetraacetic acid, urea, sodium dodecylbenzenesulphonate and sodium dodecyl sulphate. The molecular weight and sedimentation constant were approximately 30 000 and 3.0S respectively, and the isoelectric point was at pH 9.2. These results indicte that no. AH-101 alkaline protease is more stable against both temperature and highly alkaline conditions than any other protease so far reported.  相似文献   

11.
Isolation of thermophilic hydrogen bacteria was performed at 50°C using enrichment culture method. One of the four strains isolated, strain TH-1 grew most rapidly. Culture conditions of strain TH-1 were investigated. Optimum temperature and pH for growth proved to be 52°C and 7.0, respectively. There existed a positive correlation between the specific growth rate and the partial pressure of carbon dioxide in the gas phase. Ammonium and nitrate are the good nitrogen sources in that order. Effect of concentrations of nitrogen source, magnesium, ferrous and phosphate ions on the cell growth was also investigated. The maximum specific growth rate (μmax) of strain TH-1 was determined as 0.68 hr?1 by the cultivation at 52°C in a jar fermentor containing the optimal medium at pH 7.0.  相似文献   

12.
The evolutionary potential of a thermostable alpha-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid alpha-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (DeltaagaT) by transformation. This selector strain is unable to metabolize melibiose (alpha-galactoside) without recombinant alpha-galactosidases, because the native alpha-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67 degrees C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N'-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant alpha-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.  相似文献   

13.
Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is the sole energy-coupling ion. To test whether sodium is the preferred coupling ion at high temperatures, the proton- and sodium permeability was determined in liposomes prepared from lipids isolated from various bacterial and archaeal species that differ in their optimal growth temperature. The proton permeability increased with the temperature and was comparable for most species at their respective growth temperatures. Liposomes of thermophilic bacteria are an exception in the sense that the proton permeability is already high at the growth temperature. In all liposomes, the sodium permeability was lower than the proton permeability and increased with the temperature. The results suggest that the proton permeability of the cytoplasmic membrane is an important parameter in determining the maximum growth temperature.  相似文献   

14.
Yoshimura  Etsuro  Nagasaka  Seiji  Satake  Kenichi  Mori  Satoshi 《Hydrobiologia》2000,433(1-3):57-60
Cyanidium caldarium, an acidophilic, thermophilic red alga, specifically tolerates Al. The tolerance increases at lower culture temperatures. The intracellular Al concentration is kept at low levels, especially when the cells are cultured at lower temperatures. Lower Al incorporation accounts for the Al tolerance in this alga. Fe incorporation antagonizes the Al incorporation, implying that Fe transporters incorporate Al ions. Treatment with an uncoupler, carbonylcyanide m-chlorophenylhydrazone, increases the intracellular concentration of Al. These results support the hypothesis that Al ions taken up by the algal cells are exported by an energy-dependent mechanism.  相似文献   

15.
The keratinase production by the thermophilic actinomycete strain Thermoactinomyces candidus was induced by sheep wool as the sole source of carbon and nitrogen in the cultivation medium. For complete digestion of wool by the above strain, both keratinolytic serine proteinase and cellular reduction of disulfide bonds were involved. Evidence was presented that substrate induction was a major regulatory mechanism and the keratinase biosynthesis was not completely repressed by addition of other carbon (glucose) and nitrogen (NH4C1) sources. The enzyme was purified 62-fold by diethylaminoethyl-anion exchange and Sephadex G-75 gel permeation chromatographies. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified keratinase is a monomeric enzyme with a molecular mass of 30 kDa. The pH and temperature optima were determined to be 8.6 and 70 degrees C, respectively. The purified thermophilic keratinase catalyses the hydrolysis of a broad range of substrates and displays higher proteolytic activity against native keratins than other proteinases. Ca2+ was found to have a stabilizing effect on the enzyme activity at elevated temperatures.  相似文献   

16.
Six strains of floc-forming bacteria belonging to Flavobacterium were isolated from activated sludge which were deflocculated by Pronase treatment. The flocculated cells of the strain B, one of the isolates, was deflocculated not only by Pronase, but also by ethylenediaminetetraacetate. Growth was stimulated when Pronase was added in the medium. An adequate amount of calcium ion in the medium was required for flocculation. No flocculation was observed, however, when calcium was added to the cells grown with a low level of calcium. Deflocculation was observed at the late stationary phase and the onset of deflocculation depended on the concentrations of calcium in the medium. The higher concentrations delayed the deflocculation. The floes formed in the presence of calcium over 0.5 nm in the medium became resistant to the Pronase treatment.  相似文献   

17.
Inhibition and Activation of Bacterial Luciferase Synthesis   总被引:35,自引:26,他引:9       下载免费PDF全文
Luciferase synthesis is repressed when bioluminescent bacteria are inoculated into fresh medium but is induced after the cells have grown in the medium for some time. In minimal medium, an activator which leads to induction of the enzyme is released into the medium by the bacteria. Complete medium contains a dialyzable and quite stable inhibitor which leads to repression of luciferase. The bacteria remove the inhibitor from the medium and also produce activator, thus allowing synthesis of the enzyme. Two unidentified nonluminescent strains of bacteria were unable to remove the inhibitor. Two different bioluminescent strains, Photobacterium fischeri and P. fischeri strain MAV, produce specific activators that are ineffective with cells of the other strain. The two activators are different with respect to heat stability, but both are small molecules. The activators can be assayed on the basis of their ability to counteract the inhibitor. Identification of the inhibitor and the activators may allow the bioluminescent system to be linked to other metabolic processes of the cells.  相似文献   

18.
Sapunova  L. I.  Lobanok  A. G.  Parakhnya  E. V.  Kazakevich  I. O. 《Microbiology》2003,72(3):352-355
The study of the xylose/glucose isomerase–containing Arthrobacter sp. B-5 cells immobilized in cobalt hydroxide gel showed that immobilization increases the substrate affinity of the enzyme, its thermo- and pH-optima of action and stability, and makes the addition of stabilizing cobalt ions to the isomerization medium unnecessary.  相似文献   

19.
Structural features of thermozymes   总被引:15,自引:0,他引:15  
Enzymes synthesized by thermophiles and hyperthermophiles are known as thermozymes. These enzymes are typically thermostable, or resistant to irreversible inactivation at high temperatures, and thermophilic, i.e. optimally active at elevated temperatures between 60 and 125 degrees C. Enzyme thermostability encompasses thermodynamic stability and kinetic stability. Thermodynamic stability is defined by the enzyme's free energy of stabilization (deltaG(stab)) and by its melting temperature (Tm). An enzyme's kinetic stability is often expressed as its halflife (t1/2) at defined temperature. DeltaG(stab) of thermophilic proteins is 5-20 kcal/mol higher than that of mesophilic proteins. The thermostability mechanisms for thermozymes are varied and depend on the enzyme; nevertheless, some common features can be identified as contributing to stability. These features include more interactions (i.e. hydrogen bonds, electrostatic interactions, hydrophobic interactions, disulfide bonds, metal binding) than in less stable enzymes and superior conformational structure (i.e. more rigid, higher packing efficiency, reduced entropy of unfolding, conformational strain release and stability of alpha-helix). Understanding of the stabilizing features will greatly facilitate reengineering of some of the mesozymes to more stable thermozymes.  相似文献   

20.
Thermophilic sulfate-reducing bacteria in cold marine sediment   总被引:3,自引:0,他引:3  
Abstract Sulfate reduction was measured with the 35SO42− -tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0° to 15°C. The incubations were made at temperatures from 0°C to 80°C in temperature increments of 2°C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4°C and 30°C, whereas the activity at 60°C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain P60, were isolated and characterized as D esulfotomaculum kuznetsovii . The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50°–70°C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic activity. The viable population of thermophilic sulfate-reducing bacteria and the density of their spores was determined in most probable number (MPN) dilutions. The density was 2.8·104 cells·.g−1 fresh sediment, and the enumerations suggested that they were all present as spores. This result agrees well with the observed lag period in sulfate reduction above 50°C. No environment with temperatures supporting the growth of these thermophiles is known in the region around Aarhus Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号