共查询到20条相似文献,搜索用时 0 毫秒
1.
Dr. Mitch M. Lasat Nicole S. Pence Deborah L. D. Leon V. Kochian 《International journal of phytoremediation》2001,3(1):129-144
The existence of metal hyperaccumulator species demonstrates that plants have the genetic potential to remove toxic metals from contaminated soil. Possibly, one of the best-known hyperaccumulators is Thlaspi caerulescens. This species has been shown to accumulate very high Zn concentrations without manifesting any sign of toxicity. Thus, T. caerulescens represents an excellent experimental system for studying metal hyperaccumulation in plants as it relates to phytoremediation. In this article, we review the results of an investigation into the physiology, biochemistry, and molecular regulation of Zn transport and accumulation in T. caerulescens compared with a nonaccumulator relative T. arvense. Physiological studies focused on the use of 65Zn radiotracer flux techniques to characterize zinc transport and compartmentation in the root, and translocation to the shoot. Transport studies indicated that a number of Zn transport sites were stimulated in T. caerulescens, contributing to the hyperaccumulation trait. Thus, Zn influx into root and leaf cells, and Zn loading into the xylem was greater in T. caerulescens compared with the nonaccumulator T. arvense. The 4.5-fold stimulation of Zn influx into the roots of T. caerulescens was hypothesized to be due to an overexpression of Zn transporters in this species. Additionally, compartmental analysis (radiotracer wash out or efflux techniques) was used to show that Zn was sequestered in the root vacuole of T. arvense inhibiting Zn translocation to the shoot in this nonaccumulator species. Molecular studies focused on the cloning and characterization of Zn transport genes in T. caerulescens. Functional complementation of a yeast Zn transport-defective mutant with a T. caerulescens cDNA library constructed in a yeast expression vector resulted in the cloning of a Zn transport cDNA, ZNT1. Expression of ZNT1 in yeast allowed for a physiological characterization of this transporter. ZNT1 was shown to encode a high-affinity Zn transporter that can also mediate low-affinity Cd transport. Biochemical analyses indicated that enhanced Zn transport in T. caerulescens results from a constitutively high expression of ZNT1 in roots and shoots. These results suggest that overexpression of ZNT1 may be linked to an alteration of the Zn tolerance mechanism in this species. 相似文献
2.
3.
4.
Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum 总被引:12,自引:0,他引:12
Growth and zinc uptake of the hyperaccumulator species Thlaspi caerulescens J. & C. Presl and the non-hyperaccumulator species Thlaspi ochroleucum Boiss. & Heldr. were compared in solution culture experiments. T. caerulescens was able to tolerate 500 mmol m?3 (32.5 g m?3) Zn in solution without growth reduction, and up to 1000 mmol m?3 (65 g m?3) Zn without showing visible toxic symptoms but with a 25% decrease in dry matter (DM) yield. Up to 28 g kg?1 of Zn in shoot DM was obtained in healthy plants of T. caerulescens. In contrast, T. ochroleucum suffered severe phytotoxicity at 500 mmol m?3 Zn. Marked differences were shown in Zn uptake, distribution and redistribution between the two species. T. caerulescens had much higher concentrations of Zn in the shoots, whereas T. ochroleucum accumulated higher concentrations of Zn in the roots. When an external supply of 500 mmol m?3 Zn was withheld, 89% of the Zn accumulated previously in the roots of T. caerulescens was transported to the shoots over a 33 d period, whereas in T. ochroleucum only 32% was transported. T. caerulescens was shown to have a greater internal requirement for Zn than other plants. Increasing the supply of Zn from 1 to 10 mmol m?3 gave a 19% increase in the total DM of this species. liven the shoots from the 1 mmol m?3 Zn treatment which showed Zn deficiency contained 10 times greater Zn concentrations than the widely reported critical value for Zn deficiency to occur in many other plant species. The results obtained suggest that strongly expressed constitutive sequestration mechanisms exist in the hyperaccumulator T. caerulescens, which detoxify the large amount of Zn present in shoot tissues and decrease its physiological availability in the cytosol. Both T. caerulescens and T. ochroleucum had constitutively high concentrations of malate in shoots, which were little affected by different Zn treatments. Although malate may play a role in Zn chelation because of the high concentrations present, it cannot explain the species specificity of Zn tolerance and hyperaccumulation. 相似文献
5.
Noret N Meerts P Tolrà R Poschenrieder C Barceló J Escarre J 《The New phytologist》2005,165(3):763-772
* The hypothesis that zinc (Zn) hyperaccumulation defends Thlaspi caerulescens against herbivores is tested with the snail Helix aspersa. We investigated the effects of leaf zinc, cadmium, glucosinolate, nitrogen and dry matter concentrations on the feeding preferences of snails. * Four T. caerulescens populations from southern France (two from metalliferous and two from normal soils) were grown on low- and high-Zn soils to obtain contrasting leaf Zn concentrations. Plants were also collected in the field, and binary feeding choices involving low- and high-Zn leaves were conducted. * Foliar Zn, Cd, N and dry matter concentrations did not affect the feeding choices of snails, whereas glucosinolate had a significant negative effect on herbivore preferences. Compared with metallicolous plants, nonmetallicolous ones appeared to be better protected against snails, whatever their Zn concentration. * These results do not support the defence hypothesis, as glucosinolates appear to decrease the degree of herbivory when Zn does not. 相似文献
6.
7.
8.
Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense 总被引:15,自引:0,他引:15
The capacity to accumulate cadmium (Cd) and zinc (Zn) was compared in Thlaspi goesingense and four populations of Thlaspi caerulescens . Two populations of T. caerulescens were grown in hydroponics at five concentrations of Cd. In addition, plants were grown in pots containing compost in which three different concentrations of Cd and two concentrations of Zn were added. A field trial was conducted to compare Zn and Cd uptake by three populations of T. caerulescens on nine selected plots of the Woburn Market Garden Experiment (UK) which had been contaminated to different degrees with heavy metals owing to past applications of sewage sludge. Results show that the four populations of T. caerulescens had the same ability to hyperaccumulate Zn but were significantly different in terms of Cd accumulation. Two populations of T. caerulescens from Southern France accumulated much more Cd than the populations from Prayon (Belgium) and Whitesike (UK). Generally, uptake of Cd was not decreased by increased concentrations of Zn in the substrate. These results indicate that the mechanisms of Cd and Zn hyperaccumulation are not identical in this species. This is the first report of hyperaccumulation of Cd by T. goesingense , but the growth of this species was markedly reduced by the large concentrations of Zn in the substrate. Future work should focus on the differences between Cd and Zn uptake in hyperaccumulator plants at the species and population level. 相似文献
9.
Zincophilic root foraging in Thlaspi caerulescens 总被引:4,自引:3,他引:1
B. J. Haines 《The New phytologist》2002,155(3):363-372
10.
Efficient root-to-shoot translocation is a key trait of the zinc/cadmium hyperaccumulators Thlaspi caerulescens and Thlaspi praecox, but the extent of variation among different accessions and the underlying mechanisms remain unclear. Root-to-shoot translocation of Cd and Zn and apoplastic bypass flow were determined in 10 accessions of T. caerulescens and one of T. praecox, using radiolabels (109)Cd and (65)Zn. Two contrasting accessions (Pr and Ga) of T. caerulescens were further characterized for TcHMA4 expression and metal compartmentation in roots. Root-to-shoot translocation of (109)Cd and (65)Zn after 1 d exposure varied 4.4 to 5-fold among the 11 accessions, with a significant correlation between the two metals, but no significant correlation with uptake or the apoplastic bypass flow. The F(2) progeny from a cross between accessions from Prayon, Belgium (Pr) and Ganges, France (Ga) showed a continuous phenotype pattern and transgression. There was no significant difference in the TcHMA4 expression in roots between Pr and Ga. Compartmentation analysis showed a higher percentage of (109)Cd sequestered in the root vacuoles of Ga than Pr, the former being less efficient in translocation than the latter. Substantial natural variation exists in the root-to-shoot translocation of Cd and Zn, and root vacuolar sequestration may be an important factor related to this variation. 相似文献
11.
Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens 总被引:5,自引:0,他引:5
The relationship between Zn and P in the Zn hyperaccumulator Thlaspi caerulescens J. & C. Presl was investigated using hydroponic culture. Total concentrations of Zn in the shoots increased from 0·2 to 27 g kg–1 dry mass when solution Zn increased from 1 to 1000 mmol m–3 . Water-soluble Zn accounted for > 80% of the total Zn in the shoots containing > 5 g Zn kg–1 dry mass. Total P was maintained at about 3 g kg–1 dry mass in the shoots containing < 20 g Zn kg–1 dry mass, but significantly decreased with higher Zn concentrations. Linear regression between insoluble P and insoluble Zn in the shoots produced a small slope, suggesting that co-precipitation of Zn and P was not an important detoxification mechanism in the shoots. In contrast, there was a strong correlation between insoluble P and insoluble Zn in the roots, with a linear slope of 0·3 — close to the P:Zn ratio in Zn3 (PO4 )2 . Foliar sprays of phosphate did not affect shoot dry mass significantly, but decreased root length and root dry mass significantly at Zn concentrations in solution from 10 to 3000 mmol m–3 . Foliar P was translocated to roots to enhance co-precipitation of Zn and P, although this did not enhance Zn tolerance. The results suggest that T.caerulescens possesses mechanisms which allow it to accumulate and sequester huge amounts of Zn in the shoots without causing P deficiency. 相似文献
12.
13.
14.
15.
Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil 总被引:3,自引:0,他引:3
Perronnet Karen Schwartz Christophe Gérard Emilie Morel Jean Louis 《Plant and Soil》2000,227(1-2):257-263
When grown on contaminated soil, hyperaccumulator plants contain high concentrations of metals which may return to the soil
after senescence. This work was undertaken to assess the availability of Cd and Zn associated to the leaves of the hyperaccumulator
Thlaspi caerulescens after incorporation into an uncontaminated soil. A Zn- and Cd- accumulator population of T. caerulescens was grown on a Cd- and Zn- contaminated soil previously labelled with 109Cd. Leaves (TCL) were harvested, dried, ground and incorporated into the soil at a rate of 2.07 mg Cd kg−1 and 51.9 mg Zn kg−1. Then a pot experiment was conducted for 3 months with rye grass (Lolium perenne) and T. caerulescens. Rye grass was harvested monthly and T. caerulescens at the end of the experiment. Plant biomass was measured, along with the concentration of Cd, Zn and 109Cd. Results showed that water-extractable metals in TCL were 69% for Zn and 33% for Cd. Addition of TCL to soil, depleted
growth of rye grass, and improved that of T. caerulescens. At harvest, concentrations of both metals were increased in plants by TCL. Concentrations of Cd in rye grass increased with
the cut number, while that of Zn decreased slightly. Rye grass extracted 1.6% of the total Cd and 0.9% of the total Zn, and
T. caerulescens extracted up to 22.4% of the Cd and 7% of the Zn. About 94% of the Cd in rye grass and 86% in T. caerulescens was derived from TCL. In conclusion, metals associated with leaves of the hyperaccumulator T. caerulescens were very mobile after incorporation into the soil.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens 总被引:11,自引:0,他引:11
Thlaspi caerulescens is a Zn and Cd hyperaccumulator, and has been tested for its phytoremediation potential. In this paper we examine the relationships between the concentrations of Zn and Cd in soil and in T. caerulescens shoots, and calculate the rates of Zn and Cd extraction from soil. Using published data from field surveys, field and pot experiments, we show that the concentrations of Zn and Cd in the shoots correlate with the concentrations of Zn and Cd in soils in a log-linear fashion over three orders of magnitude. There is little systematic difference between different populations of T. caerulescens in the relationship between soil and plant Zn concentrations. In contrast, populations from southern France are far superior to those from other regions in Cd accumulation. Bioaccumulation factors (plant to soil concentration ratio) for Zn and Cd decrease log-linearly with soil metal concentration. Model calculations show that phytoremediation using T. caerulescens is feasible when soil is only moderately contaminated with Zn and Cd, and the phytoremediation potential is better for Cd than for Zn if the populations from southern France are used. Recent progress in the understanding of the mechanisms of Zn and Cd uptake by T. caerulescens is also reviewed. 相似文献
17.
Lodewyckx C Mergeay M Vangronsveld J Clijsters H Van der Lelie D 《International journal of phytoremediation》2002,4(2):101-115
We investigated bacterial populations associated with the Zn hyperaccumulator Thlaspi caerulescens subsp. calaminaria grown in a soil collected from an abandoned Zn-Pb mine and smelter in Plombières, Belgium. The bacterial population of the nonrhizospheric soil consisted of typical soil bacteria, some exhibiting multiple heavy-metal resistance characteristics that often are associated with polluted substrates: 7.8% and 4% of the population survived in the presence of elevated levels of Zn (1 mM) and Cd (0.8 mM), respectively. For the bacterial population isolated from the rhizosphere, the comparable survival rates were 88 and 78%. This observation indicates a selective enrichment of the metal-resistant strains due to an increased availability of the metals in soils near the roots compared with nonrhizospheric soil. The endophytic inhabitants of the roots and shoots were isolated, identified, and characterized. Although similar endophytic species were isolated from both compartments, those from the rhizoplane and roots showed lower resistance to Zn and Cd than the endophytic bacteria isolated from the shoots. In addition, root endophytic bacteria had additional requirements. Contrary to the rootresiding inhabitants, the shoot represented a niche rich in metal-resistant bacteria and even seemed to contain species that were exclusively abundant there. These differences in the characteristics of the bacterial microflora associated with T. caerulescens might possibly reflect altered metal speciation in the different soils and plant compartments studied. 相似文献
18.
Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation 总被引:2,自引:3,他引:2
Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL. 相似文献
19.
20.
The in situ phytoextraction of cadmium from soils can only be achieved using plants that are both tolerant to high Cd concentrations and able to extract sufficient amounts of the metal. However, very few plant species are capable of remediating Cd polluted soils in a reasonable time frame. This paper aims to show that the population of the hyperaccumulator Thlaspi caerulescens J. & C. Presl. from Viviez (south of France), which has a high Cd-accumulating capability, is an efficient tool to remove Cd from contaminated soils. Roots of T. caerulescensViviez proliferate in hot spots of metals in soils which is particularly advantageous because of heterogeneity of the distribution of metal in polluted soils. Isotopic techniques showed that plants from this population acquire Cd from the same pools as non-accumulating species, but that it was much more efficient than non-hyperaccumulators at removing the metal from the soil labile pool. This is due: to (i) a specific rooting strategy, and (ii) a high uptake rate resulting from the existence in this population of Cd-specific transport channels or carriers in the root membrane. Growth and overall extraction can be improved with appropriate N fertilisation, supplied either as mineral fertilisers or uncontaminated sewage sludge. Selecting bigger plants is possible from within a suitable Cd-accumulating population to improve the phytoextraction process. Growing the Cd-accumulating populations results in a reduction in the availability of Cd and Zn as shown with field and lysimeter experiments conducted for several years. As a result, on a practical aspect, Cd hyperaccumulating populations of T. caerulescens may be used as a tool to efficiently reduce the availability of Cd in soils, providing appropriate populations are used. 相似文献