首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-colour in situ hybridization with probes for two co-amplified markers located several megabases apart on chromosome 1 has been used to analyse early stages of adenylate deaminase 2 (AMPD2) gene amplification in Chinese hamster cells. In the amplified chromosomal structures, the distribution of hybridization spots identifies megabase-long inverted repeats. Their organization is remarkably well accounted for if breakage-fusion-bridge cycles involving sister chromatids drive the amplification process at these early stages. During interphase the markers often segregate into distinct nuclear domains. Many nuclei have bulges or release micronuclei, carrying several copies of one or both markers. These observations indicate that the amplified units destabilize the nuclear organization and eventually lead to DNA breakage during interphase. We propose a model in which interphase breakage has a role in the progression of gene amplification.  相似文献   

2.
Unstable variants with increasing amounts of adenylate-deaminase (AMPD) have been stepwise recovered from Chinese hamster fibroblasts plated in selective medium containing increasing coformycin concentrations; several polypeptides accumulate in the variants in parallel to AMPD: they are no longer detectable in cells which reverted to the wild-type enzyme level. We report here the molecular cloning of cDNA sequences complementary to mRNAs coding for four such polypeptides. The plasmidic probes have been exploited to characterize their complementary mRNAs and to quantify the copies of these cognate genes in a variant and in two revertant clones. The results show that different mRNAs code for the four polypeptides; their accumulation is accounted for by amplification of their specific genes; these observations suggest that cells overproducing AMPD are characterized by the presence of amplification units comprising several expressed genes.  相似文献   

3.
In a previous study of three independent families of mutants selected for overproduction of adenylate deaminase (AMPD), we were not able to isolate a cDNA probe for the gene and so could not demonstrate its amplification directly. In addition to overproduction of AMPD, four proteins of unknown function, designated W, X, Y1, and Y2, accumulated, and by using the corresponding cDNA probes, we demonstrated amplification of all four genes. In independent mutant clones, sometimes all and sometimes only a subset of these genes were amplified. Assuming that all five genes are linked, the pattern of their coamplification suggested a genetic map in which AMPD lies between W and Y1. We show here that a two-step chromosome walk joins the W and Y1 genes, that the AMPD gene is the only expressed sequence between them, and that its amplification is indeed responsible for overproduction of the AMPD protein. In the course of this work, we cloned and studied two novel joints which mark rearrangements on either side of the AMPD gene. Each joint was generated independently in a single first-step mutant at single or low copy number. Remarkably, each joint was amplified preferentially in every second- and third-step mutant derived from the first-step line in which it was originally present, suggesting that the two independent rearrangements each generated amplification-prone structures.  相似文献   

4.
BACKGROUND: Gene amplification and chromosomal rearrangements are frequent properties of cancer cells, provoking considerable interest in the mechanism of gene amplification and its consequences - particularly its relationship to chromosomal rearrangements. We recently studied the amplification of the gene for adenylate deaminase 2 (AMPD2) in Chinese hamster cells. Using fluorescent in situ hybridization (FISH), we found that early amplification of the AMPD2 gene is based on unequal gene segregation at mitosis, rather than local over-replication. We observed large inverted repeats of the amplified sequences, consistent with an amplification mechanism involving cycles of chromatid breakage, followed by fusion after replication and, in mitosis, the formation of bridges between the fused sister chromatids that leads to further breaks - a process we refer to as chromatid breakage-fusion-bridge (BFB) cycles. Our previous work left open the question of how this mechanism of gene amplification is related, if at all, to the chromosomal rearrangements that generate the dicentric, ring and double-minute (DM) chromosomes observed in some AMPD2-amplified metaphase cells, which are not predicted intermediates of chromatid BFB cycles, although they could be generated by related chromosome BFB cycles. RESULTS: We have addressed this question using FISH with probes for the AMPD2 gene and other markers on the same chromosome. Our results are not consistent with the chromosome BFB cycle mechanism, in which two chromatids break simultaneously and fuse to generate, after replication, a dicentric chromosome. Rather, they suggest that dicentric chromosomes are generated by secondary events that occur during chromatid BFB cycles. Our results also suggest that DM chromosomes are generated by the 'looping-out' of a chromosomal region, generating a circular DNA molecule lacking a centromere; in this case, gene amplification would result from the unequal segregation of DM chromosomes at mitosis. CONCLUSION: We conclude that, at early stages of AMPD2 gene amplification, chromatid BFB cycles are a major source of both 'intrachromosomal' gene amplification and genomic rearrangement, which are first limited to a single chromosome but which can then potentially spread to any additional chromosome. It also seems that, occasionally, a DNA sequence including the AMPD2 gene can be excised, generating a DM chromosome and thus initiating an independent process of 'extrachromosomal' amplification.  相似文献   

5.
《Gene》1998,211(1):101-108
Translocations of the coding exons of the human c-myc gene are consistent features of human Burkitt lymphomas (BL). In the BL cell lines CA46, JD40, and ST486, the second and third c-myc exons have been translocated into the immunoglobulin heavy chain locus. In addition to this rearrangement, in all three cell lines, we have found that the translocated c-myc exons show low-level amplification relative to restriction fragments from the germ-line c-myc gene. The patterns of hybridization of an IgM switch region probe suggest that immunoglobulin heavy chain sequences have been co-amplified with the translocated c-myc sequences. Differential sedimentation was used to determine whether the amplified sequences reside in high-molecular-weight chromosomes or low-molecular-weight extrachromosomal DNA. In JD40 and ST486 cells, the amplified c-myc sequences were found on high-molecular-weight chromosomes; ST486 cells also contained translocated c-myc sequences in low-molecular-weight, extrachromosomal DNA, as did CA46 cells. These conclusions were corroborated by fluorescence in-situ hybridization (FISH) of HeLa, CA46, ST486 and JD40 metaphase chromosomes. These results suggest that there is ongoing selection for cells containing amplified copies of the expressed c-myc sequences, and that there is continuous generation of extrachromosomal copies of the translocated c-myc sequences in ST486 and CA46 cells.  相似文献   

6.
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.  相似文献   

7.
Syrian hamster cell lines selected in multiple steps for resistance to high levels of N-(phosphonacetyl)-L-aspartate (PALA) contain many copies of the gene coding for the pyrimidine pathway enzyme CAD. Approximately 500 kilobases of additional DNA was coamplified with each copy of the CAD gene in several cell lines. To investigate its structure and organization, we cloned ca. 162 kilobases of coamplified DNA from cell line 165-28 and ca. 68 kilobases from cell line B5-4, using a screening method based solely on the greater abundance of amplified sequences in the resistant cells. Individual cloned fragments were then used to probe Southern transfers of genomic DNA from 12 different PALA-resistant mutants and the wild-type parents. A contiguous region of DNA ca. 44 kilobases long which included the CAD gene was amplified in all 12 mutants. However, the fragments cloned from 165-28 which were external to this region were not amplified in any other mutant, and the external fragments cloned from B5-4 were not amplified in two of the mutants. These results suggest that movement or major rearrangement of DNA may have accompanied some of the amplification events. We also found that different fragments were amplified to different degrees within a single mutant cell line. We conclude that the amplified DNA was not comprised of identical, tandemly arranged units. Its structure was much more complex and was different in different mutants. Several restriction fragments containing amplified sequences were found only in the DNA of the mutant cell line from which they were isolated and were not detected in DNA from wild-type cells or from any other mutant cells. These fragments contained novel joints created by rearrangement of the DNA during amplification. The cloned novel fragments hybridized only to normal fragments in every cell line examined, except for the line from which each novel fragment was isolated or the parental population for that line. This result argues that "hot spots" for forming novel joints are rare or nonexistent.  相似文献   

8.
9.
Four genes encoding proteins designated as W, X, Y1, and Y2 were found previously to be amplified at different levels in a Chinese hamster fibroblast mutant line selected for overproduction of adenylate deaminase. To gain information on the molecular mechanisms responsible, we studied the levels of amplification and the structures of these four genes in several lineages of mutant cells with comparable activities of adenylate deaminase, the selected enzyme. Only the W gene was amplified in all the lines. In one line, the X, Y1, and Y2 genes were coamplified, while in others either the Y1 gene or the pair X and Y2 were coamplified. The results were consistent with linkage of all the genes--in a particular order--in an amplifiable sequence with variable endpoints. Novel joints with a nonrandom distribution were observed. We frequently detected rearranged copies of the W gene, but very few novel joints were present in the other three genes in the six highly amplified lines examined. Some of the novel joints in gene W were highly amplified; they were generated by reamplification of a rearrangement that appeared at an early selection step. In some lines, reamplification was accompanied by deletion or mass correction of preexisting units. We discuss mechanisms which might account for these observations.  相似文献   

10.
We studied the loss and stabilization of dihydrofolate reductase genes in clones of a methotrexate-resistant murine S-180 cell line. These cells contained multiple copies of the dihydrofolate reductase gene which were associated with double minute chromosomes. The growth rate of these cells in the absence of methotrexate was inversely related to the degree of gene amplification (number of double minute chromosomes). Cells could both gain and lose genes as a result of an unequal distribution of double minute chromosomes into daughter cells at mitosis. The loss of amplified dihydrofolate reductase genes during growth in the absence of methotrexate resulted from the continual generation of cells containing lower numbers of double minute chromosomes. Because of the growth advantage of these cells, they became dominant in the population. We also studied an unstably resistant S-180 cell line (clone) that, after 3 years of continuous growth in methotrexate, generated cells containing stably amplified dihydrofolate reductase genes. These genes were present on one or more chromosomes, and they were retained in a stable state.  相似文献   

11.
A modification of reverse chromosome painting was carried out using genomic DNA from tumor cells as a complex probe for chromosomal in situ suppression hybridization to normal metaphase chromsome spreads. Amplified DNA sequences contained in such probes showed specific signals, revealing the normal chromosome positions from which these sequences were derived. As a model system, genomic DNAs were analyzed from three tumor cell lines with amplification units including the proto-oncogene c-myc. The smallest amplification unit was about 90 kb and was present in 16–24 copies; the largest unit was bigger than 600 kb and was present in 16–32 copies. Specific signals that co-localized with a differently labeled c-myc probe on chromosome band 8q24 were obtained with genomic DNA from each cell line. In further experiments, genomic DNA derived from primary tumor material was used in the case of a male patient with glioblastoma multiforme (GBM). Southern blot analysis using an epidermal growth factor receptor gene (EGFR) probe that maps to 7p13 indicated the amplification of sequences from this gene. Using reverse chromosome painting, signals were found both on band 7p13 and bands 12q13–q15. Notably, the signal on 12q13–q15 was consistently stronger. The weaker 7p13 signal showed co-localization with the major signal of the differently labeled EGFR probe. A minor signal of this probe was seen on 12q13, suggesting cross-hybridization to ERB3 sequences homologous to EGFR. The results indicate co-amplification of sequences from bands 12q13–q15, in addition to sequences from band 7p13. Several oncogenes map to 12q13–q15 providing candidate genes for a tumor-associated proto-oncogene amplification. Although the nature of the amplified sequences needs to be clarified, this experiment demonstrates the potential of reverse chromosome painting with genomic tumor DNA for rapidly mapping the normal chromosomal localization of the DNA from which the amplified sequences were derived. In addition, a weaker staining of chromosomes 10 and X was consistently observed indicating that these chromosomes were present in only one copy in the GBM genome. This rapid approach can be used to analyze cases where no metaphase spreads from the tumor material are available. It does not require any preknowledge of amplified sequences and can be applied to screen large numbers of tumors.  相似文献   

12.
Bacteriophage T4 mutants hyperproducing gene 17 protein (Hp17) have been isolated at high frequency by growing gene 17 amber mutants on ochre suppressor strains of Escherichia coli. Most mutants showed the co-hyperproduction of gene 18 protein, although one anomalous mutant hyperproduced a 60,000 Mr partial polypeptide of gene 18. Hybridization of T4 late RNAs to cloned plasmid DNA containing genes 17, 18 or control T4 genes revealed that approximately five times more gene 17 mRNA and two to three times more gene 18 mRNA were synthesized in the Hp17 mutant infections. DNA-DNA hybridizations showed that Hp17 mutant DNA contained two to three times more copies of genes 17 and 18 than wild-type DNA. Southern blot analysis suggested that Hp17 mutants carry a direct tandem repeat of the gene 17-18 region, with variable copy number from one to at least six copies. Hyperproduction of gene 17 and 18 proteins appears therefore to result from gene amplification specific to the gene 17-18 region. In contrast to gene duplications reported in lambda and T4 phage, and numerous cases of gene amplification in bacteria, a similar or identical novel junctional fragment created by the amplification event was observed among 28 independent T4 Hp17 isolates; therefore, the mechanism giving gise to amplified sequences may involve specific sequences in this region of the T4 genome.  相似文献   

13.
A protocol is described for production of micrograms of DNA from single copies of flow‐sorted plant chromosomes. Of 183 single copies of wheat chromosome 3B, 118 (64%) were successfully amplified. Sequencing DNA amplification products using an Illumina HiSeq 2000 system to 10× coverage and merging sequences from three separate amplifications resulted in 60% coverage of the chromosome 3B reference, entirely covering 30% of its genes. The merged sequences permitted de novo assembly of 19% of chromosome 3B genes, with 10% of genes contained in a single contig, and 39% of genes covered for at least 80% of their length. The chromosome‐derived sequences allowed identification of missing genic sequences in the chromosome 3B reference and short sequences similar to 3B in survey sequences of other wheat chromosomes. These observations indicate that single‐chromosome sequencing is suitable to identify genic sequences on particular chromosomes, to develop chromosome‐specific DNA markers, to verify assignment of DNA sequence contigs to individual pseudomolecules, and to validate whole‐genome assemblies. The protocol expands the potential of chromosome genomics, which may now be applied to any plant species from which chromosome samples suitable for flow cytometry can be prepared, and opens new avenues for studies on chromosome structural heterozygosity and haplotype phasing in plants.  相似文献   

14.
DNA amplification is associated with genomic instability, the main characteristic of cancer cells, and it frequently involves protooncogenes. Double minute chromosomes (DM) and homogeneously stained regions (HSR) are cytological manifestations of DNA amplification. Gain of chromosome 19 is a recurrent alteration in mouse hepatocellular carcinoma (HCC). In one tumor cell line established from HCC developed in myc transgenic mice, DM derived from chromosome 19 were identified by spectral karyotyping and confirmed by fluorescence in situ hybridization (FISH). A probe generated by PCR from microdissected DM was localized by FISH on normal and HCC-derived cell lines on DM and chromosome 19 at two sites separated by several medium size G-bands. This organization of DM containing amplified sequences from separate loci of the same chromosome, indicates a complex mechanism of DNA amplification, possibly involving more than one gene. DM or HSR were not previously identified in mouse HCC and adult human HCC. The recognition of these loci could lead to the cloning of new genes or identification of known genes important in development or progression of HCC.  相似文献   

15.
16.
We characterized N-myc gene amplification in three human neuroblastoma cell lines (IMR-32, TGW, GOTO). Rearrangements in long-range regions surrounding amplified N-myc genes were examined by pulsed-field gel electrophoresis. Since rare-cutting enzymes completely digested DNA at the middle of the N-myc gene, we were able to construct a physical map upstream and downstream of the germline N-myc gene, and to obtain information on restriction sites surrounding amplified N-myc genes. This method enables us to envisage the organization of amplified units over a long range. Digestion patterns differed considerably among the germline and the three cell lines, but were simple in each case. We estimated that the minimal distance between neighboring N-myc genes is at least several hundred kilobases. Our data suggest that amplification units contain several DNA fragments derived from ditterent loci, but that they are homogeneous.  相似文献   

17.
18.
The c-myc gene is amplified in the human breast carcinoma cell line SW 613-S. At early in vitro passages, the extra copies of the gene were mainly localized in double minute chromosomes (DMs), as shown by in situ hybridization with a biotinylated c-myc probe. However, cells without DMs were also present in which the c-myc genes were found integrated into any of several distinct chromosomes (mainly 7q+, 4 and 4q+, and 1). When this cell line was propagated in vitro, the level of c-myc amplification decreased because cells with DMs and a high amplification level were lost and replaced by cells without DMs and having a low amplification level. On the contrary, when early passage SW 613-S cells were grown in vivo, as subcutaneous tumours in nude mice, cells with numerous DMs and a high level of c-myc amplification were selected for. In one cell line (SW 613-Tu1) established from such a tumour, the DM-containing cells were substituted at late passages for cells with a high number of c-myc copies integrated within an abnormally banded region, at band 17q24 of a 17q+ chromosome. When only cells with integrated genes were present, this cell line was still highly tumorigenic indicating that the localization of the c-myc genes in DMs was not required for these cells to be tumorigenic in nude mice. Furthermore, cells of the secondary tumours induced by SW 613-Tu1 did not contain any DMs showing that in vivo growth did not promote the release of integrated c-myc copies into DMs.  相似文献   

19.
In tumor cells in vivo and in vitro the amplification of large DNA sequences is a spontaneous and frequently occurring genetic event. We have used human cells to study independent events leading to a low level of amplification of a single copy of an integrated plasmid. Fluorescence in situ hybridization, chromosome banding, and chromosome painting revealed that the new amplified DNA sequences can become located on chromosomes that are totally unrelated to the chromosome that harbors the original DNA sequences, indicating that the transposition of amplified DNA sequences is interchromosomal. In cells containing amplified DNA sequences the integrated single-copy plasmid remained at its original location. The unit of amplification contained a DNA fragment of at least a 800 kb and the same fragment was also present in the parental single-copy cell clone. The data suggest that a doubling of the DNA region at the original location precedes or is coupled to gene amplification.  相似文献   

20.
Although gene amplification, a process that is markedly enhanced in tumor cells, has been studied in many different cell systems, there is still controversy about the mechanism(s) involved in this process. It is still unclear what happens to the DNA sequences that become amplified, whether they remain present at their original location (conservative gene amplification) or whether gene amplification necessarily results in a deletion at the original location (non-conservative gene amplification). We have studied gene amplification in a human osteosarcoma cell line, starting from a cell clone which contains only one copy of a plasmid integrate. Independent amplificants, originating from this clone and containing elevated plasmid copy numbers, were isolated and analyzed. Based on previous observations, encompassing the persistence of single-copy DNA sequences besides amplified DNA sequences clustered at a different location in the independent amplificants, we proposed an amplification pathway including a local duplication step and transposition of the duplicated DNA to other chromosomal positions. Now we have extended our study to more independent amplificants. We prove that the single-copy plasmid-containing chromosomes in the different amplificants and the single-copy plasmid-containing chromosome in the original parental cell clone are indeed identical, namely a translocation chromosome composed of at least three parts of which two originate from chromosomes 14 and 17. We show that the unit of amplification and the unit of the proposed transposition event are at least 1.5 Mb. We also demonstrate that the amplified DNA sequences, present at genomic locations other than the original single-copy DNA sequences, are preferentially associated with chromosome 16. We find that the amplified DNA sequences are often located at or near a site of chromosome translocation involving chromosome 16. In one cell clone we detect the amplified DNA sequences in most of the cells to be located within a complete chromosome 16 while in a minority of cells the amplified sequences are located at or near a breakpoint on a translocation chromosome 16. This indicates that this amplification region is highly unstable and frequently gives rise to translocation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号