首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

2.
The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot (stem and leaf) Ni concentrations. Plants were grown either hydroponically or in Ni enriched soils from an area surrounding an historic Ni refinery in Port Colborne, Ontario, Canada. Electron probe micro-analysis (EPMA) and synchrotron based micro X-ray fluorescence (μ-SXRF) spectroscopy were used to determine the metal distribution and co-localization and synchrotron X-ray and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies were used to determine the Ni speciation in plant parts and extracted sap. Nickel is concentrated in the dermal leaf and stem tissues of A. murale bound primarily to malate along with other low molecular weight organic ligands and possibly counter anions (e.g., sulfate). Ni is present in the plant sap and vasculature bound to histidine, malate and other low molecular weight compounds. The data presented herein supports a model in which Ni is transported from the roots to the shoots complexed with histidine and stored within the plant leaf dermal tissues complexed with malate, and other low molecular weight organic acids or counter-ions.  相似文献   

3.
Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability of EDTA as a potential remediating agent. Parameters, including EDTA concentration, soil type, soil content, washing cycle, precipitant concentration and type, and pH, were varied and tested during metal extraction and recovery operations. Factors, including EDTA concentration, aqueous and 5% soil slurry, presence of Pb, acclimated and unacclimated activated sludges, along with abiotic control, were varied and studied in the biodegradation of EDTA. The results showed that EDTA was able to extract lead completely from the tested soils, amenable to recovery by addition of cationic and anionic precipitants in the alkaline pH range, relatively biostable even under conditions very favorable toward biodegradation. Thus, EDTA is a strong, recoverable, and relatively biostable chelating agent that has potential for soil remediation application.  相似文献   

4.
Soil contamination with iron-cyanide complexes is a common problem at former manufactured gas plant (MGP) sites. Dissolution of the cyanide, from Prussian Blue (ferric ferrocyanide), creates an environmental hazard, whereas the risk of groundwater contamination depends on the stability of dissolved iron–cyanide complexes. Lack of a standard leaching method to determine the water-soluble (plant-available) cyanide fraction generates potential limitations for implementing remediation strategies like phytoremediation. Applicability of neutral solution extraction to determine the water-soluble cyanide fraction and the stability of Prussian Blue in surface and near-surface soils of an MGP site in Cottbus, undersaturated and unsaturated water conditions, was studied in column leaching and batch extraction experiments. MGP soils used in the long-term tests varied according to the pH (5.0–7.7) and the total cyanide content (40–1718 mg kg?1). Column leaching, after four months of percolation, still yielded effluent concentrations exceeding the German drinking water limit (> 50 μg L?1) and the solubility of Prussian Blue reported in the literature (< 1 mg L?1) from both alkaline and acidic soils. Long-term (1344 h) extraction of MGP soils with distilled water was sufficient to dissolve 97% of the total cyanide from the slightly alkaline soils and up to 78% from the acidic soils. Both experiments revealed that dissolution of ferric ferrocyanide under circum-neutral pH and oxic water conditions is a function of time, where the released amount is dependent on the soil pH and total cyanide content. Unexpectedly high and continuous solubility of Prussian Blue, both in acidic and slightly alkaline MGP soils, implies the need to introduce an additional cyanide fraction (“readily soluble fraction”) to improve and specify cyanide leaching methods. Long-term extraction of cyanide-contaminated soil in neutral solution seems to be a promising approach to evaluate the potential hazard of groundwater pollution at the MGP sites.  相似文献   

5.
There is increasing and widespread interest in the maintenance of soil quality and remediation strategies for management of soils contaminated with organic pollutants and trace metals or metalloids. There is also a growing body of evidence that arbuscular mycorrhizal (AM) fungi can exert protective effects on host plants under conditions of soil metal contamination. Research has focused on the mechanisms involved and has raised the prospect of utilizing the mutualistic association in soil re-vegetation programmes. In this short paper we briefly review this research, summarize some recent work and highlight some new data which indicate that the alleviation of metal phytotoxicity, particularly Zn toxicity, by arbuscular mycorrhiza may occur by both direct and indirect mechanisms. Binding of metals in mycorrhizal structures and immobilization of metals in the mycorrhizosphere may contribute to the direct effects. Indirect effects may include the mycorrhizal contribution to balanced plant mineral nutrition, especially P nutrition, leading to increased plant growth and enhanced metal tolerance. Further research on the potential application of arbuscular mycorrhiza in the bioremediation or management of metal-contaminated soils is also discussed.  相似文献   

6.
Since heavy metals are nondegradable and strongly bonded in soils, remediation of heavy metal polluted soils by extraction is difficult and current extraction techniques require harsh chemicals such as ethylenediaminetetraacetic acid (EDTA). However, use of EDTA is environmentally problematic because of costs, persistence, toxicity and deterioration of soil structure. Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmentally friendly substitute for EDTA. A strongly polluted, calcareous urban soil (CRC soil) and a moderately polluted agricultural soil (CUP soil) were extracted at neutral pH in batch mode by three HS solutions from beech and Norway spruce litter (Beech-HS and Spruce-HS) and processed cow slurry (Bio-HS), all containing 25 mM dissolved organic carbon (DOC). After 10 extractions with a solution to soil ratio of 5:1 (L/kg), 8% to 39% of the total Cd, Cu, Ni and Pb soil contents, lowest for Ni and highest for Cu/Pb, were extracted. Natural and processed HS samples had comparable capacities to extract the heavy metals. A comparison of 100 mM DOC of Bio-HS and EDTA as extractants for Cu from the CRC soil showed extraction of 67% by EDTA and 41% by Bio-HS, indicating somewhat higher efficiency of EDTA than of HS. Sequential extraction of the CRC soil after Bio-HS and EDTA extraction showed removal of exchangeable, carbonate- and metal oxide-bound Cu but also of some residual Cu. It is therefore concluded that HS appears to be an attractive and promising alternative to EDTA as remediation agent for heavy metal polluted soils provided cheap HS of good quality is easily available.  相似文献   

7.
韦革宏  马占强 《微生物学报》2010,50(11):1421-1430
土壤重金属污染严重影响了人类健康和生态系统稳定,已成为亟待解决的现实问题。在重金属污染地,氮素的极端不足是植被恢复主要限制因子之一。根瘤菌-豆科植物共生体系是固氮能力最强的生物固氮体系,在促进重金属污染地氮素循化和营养元素积累中具有重要作用。本文阐述土壤重金属污染的修复方法及其特点,微生物抗重金属的机理及促植物生长和重金属积累的特性,根瘤菌-豆科植物共生体系在土壤重金属污染修复中的优越性,研究现状及应用潜力。提出应用"豆科植物-根瘤菌共生体系"修复重金属污染土壤的新思路和新任务。  相似文献   

8.
Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.  相似文献   

9.
Nickel (Ni) phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is undergoing commercial development. Serpentinite derived soils have a very low ratio of Ca/Mg among soils due the nature of the parent rock. In crop plants, soil Ca reduces Ni uptake and phytotoxicity, so it is possible that the low Ca of serpentine soils could limit hyperaccumulator plant tolerance of serpentine soils used for commercial phytomining. In this study, we investigated the effects of varied Ca concentration in the presence of high Mg characteristic of serpentine soils on Ni uptake and tolerance by serpentine-endemic species Alyssum murale Waldst. et Kit. and A. pintodasilvae T.R. Dudley in comparison with cabbage (Brassica oleracea L. var. capita) in a nutrient solution study. The levels of Ca and Mg used were based on serpentine and normal soils, and Ni was based on achieving over 1% Ni in Alyssum shoots in preliminary tests. Varied solution concentrations of Ni (31.6–1,000 μM for Alyssum, 1.0–10 μM for cabbage) and Ca (0.128–5 mM) were used in a factorial experimental design; 2 mM Mg was used to mimic serpentine soils. Alyssum spp. showed much greater tolerance to high Ni, high Mg, and low Ca solution concentrations than cabbage. For Alyssum spp., Ni induced phytotoxicity was only apparent at 1,000 μM Ni with relatively low and high Ca/Mg quotient. In the 1,000 μM Ni treatment, shoot Ni concentrations ranged from 8.18 to 22.8 g kg?1 for A. murale and 7.60 to 16.0 g kg?1 for A. pintodasilvae. Normal solution Ca concentrations (0.8–2 mM) gave the best yield across all Ni treatments for the Alyssum species tested. It was clear that solution Ca levels affected shoot Ni concentration, shoot yield and Ni translocation from root to shoot, but the relation was non-linear, increasing with increasing Ca up to 2 mM Ca, then declining at the highest Ca. Our results indicate that Ca addition to high Mg serpentine soils with very low Ca/Mg ratio may reduce Ni phytotoxicity and improve annual Ni phytoextraction by Alyssum hyperaccumulator species. Removal of shoot biomass in phytomining will require Ca application to maintain full yield potential.  相似文献   

10.
Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.  相似文献   

11.
In Western Europe, policy makers are currently moving towards a more integrated risk-based approach of soil contamination assessment. As part of this approach, selective single extraction procedures have been proposed to add complementary insights regarding heavy metal behaviour and phytoavailability in soils and sediments. However, there is currently a wide range of such procedures available in literature, hampering standardisation and harmonisation of phytoavailability research of heavy metals. The current study examines shoot accumulation of Cd, Cu, Ni, Pb and Zn by the test plant Phaseolus vulgaris in 21 soils, differing in soil composition and level of contamination. On these soils, 12 different commonly used extraction procedures have been compared: soil solution extraction by Rhizon soil moisture samplers, 0.01 M CaCl2, 0.1 M NaNO3, 1 M NH4NO3, 1 M NH4NOAc, 1 M MgCl2, 0.11 M HOAc, 0.5 M HNO3, 0.1 M HCl, DTPA–TEA–CaCl2, EDTA-NH4OAc and aqua regia. The plant species used in this study has previously been proposed as a test plant in a bioassay for assessing heavy metal induced oxidative stress in contaminated soils [Van Assche, F., Clijsters, H., 1990. A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ. Pollut., 66, 157–172]. Cadmium shoot accumulation correlated best with soil solution concentrations, unbuffered nitrate solutions and the dilute CaCl2 extraction procedure. The same was observed for Zn, yet for this element NH4OAc and MgCl2 also provided significant interactions. The best prediction for Ni was observed in the cluster containing CaCl2 and NH4NO3. For Cd, Zn and Ni, the pseudo-total content and the aggressive chelate based and/or acidic extractants did not correlate well with shoot accumulation. Cu and Pb uptake on the other hand was found to correlate significantly (p = 0.01) with total content as well as with all aggressive extraction procedures over the range of soils used in this experiment. In general, the 0.01 M CaCl2 extraction procedure proved to be the most versatile as it provided a good indication of phytoavailability for all five metals under evaluation.  相似文献   

12.
采用室内模拟试验方法,研究了在水稻土、元江土和墨江土中添加泡囊假单胞菌(Pseulormanas vesicularis)后土壤中微生物种群数量、土壤酶活性和镍超积累植物Alyssum corsicum对土壤镍的富集效果.土壤接种泡囊假单胞菌70d后,水稻土中DTPA提取态镍较对照土中的明显减少、元江土和墨江土中的有所减少;土壤中细菌、真菌和放线菌数量增加,5种土壤酶活性提高.试验结果表明,水稻土、元江土、墨江土添加泡囊假单菌后植物地上部生物量较对照分别增加了29%、309%和43%,进而提高了A.corsicum自土壤中富集镍的效率:水稻土中增加54%,元江土中增加306%,墨江土中增加32%.泡囊假单胞菌这一新用途的发现,可为植物修复微生物制剂和基因工程菌的开发提供本土的微生物的菌种资源.  相似文献   

13.
Soil pollution is a major environmental problem and many contaminated sites are tainted with a mixture of organic and heavy metal contaminants. Compared to other remedial strategies, phytoremediation is a low cost, environmentally-friendly, sustainable means of remediating the contamination. This review first provides an overview of phytoremediation studies where the soil is contaminated with just one type of pollutant (heavy metals or organics) and then critically evaluates the applicability of phytotechnologies for the remediation of contaminated sites where the soil is polluted by a mixture of organic and heavy metal contaminants. In most of the earlier research studies, mixed contamination was held to be detrimental to plant growth, yet there were instances where plant growth was more successful in soil with mixed contamination than in the soil with only individual contaminants. New effective phytoremediation strategies can be designed for remediation of co-contaminated sites using: (a) plants species especially adapted to grow in the contaminated site (hyperacumulators, local plants, transgenic plants); (b) endophytic bacteria to enhance the degradation in the rizhosphere; (c) soil amendments to increase the contaminants bioavailability [chelating agents and (bio)surfactants]; (d) soil fertilization to enhance the plant growth and microbial activity in the soil; and (e) coupling phytoremediation with other remediation technologies such as electrokinetic remediation or enhanced biodegradation in the rhizosphere.  相似文献   

14.
Column experiments of copper extraction from four contaminated soils characterized by a content of Soil Organic Matter (SOM) ranging from 1% to 25% are presented and discussed. The extraction was performed by flushing the soil with an aqueous solution of a sodium salt of ethylene diamminotetraacetic acid (EDTA). Preliminary tests were performed on a soil containing 25% of organic matter, to investigate the influence of pH, concentration and volumes of EDTA on its chelant action and on the dissolution of SOM. Having selected the optimal conditions for the extraction process, a further series of tests was conducted on the four soils to evaluate the influence of organic content on copper extraction yields. EDTA solutions at 0.01 M, 0.05 M, 0.1 and 0.2 M were injected at 0.33 ml/s; copper and organic matter extraction yield were determined. At a pH of 5, 15 pore volume (PV) of a solution containing 0.05M EDTA, extracted about 99% of copper contained by the soil with the higher organic matter content. Under the same conditions, and for soil with > 6% SOM, extraction yields over 80% were achieved, while at lower organic content, copper extraction was dramatically reduced. This was attributed to the formation of highly stable copper-humate complexes and to their increasingly dissolution that occurred in the soils with higher organic matter level.

Experimental tests performed at different contamination levels (1200 mg/kg, 2400 mg/kg) showed that EDTA extraction effectiveness also depended upon initial soil Cu concentration.  相似文献   


15.
Iron- and sulfur-oxidizing bacteria identified as Thiobacillus ferrooxidans and T. thiooxidans were successfully enriched from various soil samples contaminated with heavy metals and organic compounds. Depending on the growth medium, the soil sample, and the type of contaminant, the indigenous isolates solubilized &gt; 50% of most of the heavy metals present in the solid sample (As, Cd, Co, Cr, Cu, Ni, V, Zn, B, Be). Leaching with T. ferrooxidans strains resulted in total extraction of Cd, Co, Cu, and Ni. With sulfur-oxidizing bacteria &gt; 80% of Cd, Co, Cu, and Zn was mobilized from rainwater sludge. Pb and Ba were not detected in the leachate, given the insolubility of their sulfate compounds. An increase in pulp density up to 20%, indicating 6.6% total organic carbon in the soil and rubble leach experiment (sample 557), did not inhibit the growth of the indigenous T. ferrooxidans strain. In view of these results, bioleaching appears to have some potential for remediation of heavy metal contaminated soils.  相似文献   

16.
Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.  相似文献   

17.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

18.
丛枝菌根对有机污染土壤的修复作用及机理   总被引:7,自引:0,他引:7  
丛枝菌根(AM)是丛枝菌根真菌(AMF)与植物根系相互作用的互惠共生体,能改良土壤结构,增强植物抗性.自然界中已知的AMF有170多种,分布广泛,且可与大多数植物共生.利用AM修复有机污染土壤正成为一个崭新的研究方向.本文综述了AM对多环芳烃、酞酸脂、石油和农药等一些典型有机污染物污染土壤的修复作用.AM修复有机污染土壤的机理主要包括:AMF代谢有机污染物;AM分泌酶,降解污染物;AM影响根系分泌作用,并促进根际微生物对有机污染物的降解;AMF宿主植物吸收积累污染物.AM修复研究中,高效AMF的筛选、复合菌种效应、土壤老化、AM作用下植物对有机污染物的吸收积累等几方面仍有待于深入研究.  相似文献   

19.
This study was conducted to elucidate effects of inoculating plant growth-promoting bacterium Psychrobacter sp. SRS8 on the growth and phytoextraction potential of energy crops Ricinus communis and Helianthus annuus in artificially Ni contaminated soils. The toxicity symptom in plants under Ni stress expressed as chlorophyll, protein content, growth inhibition, and Fe, P concentrations were studied, and the possible relationship among them were also discussed. The PGPB SRS8 was found capable of stimulating plant growth and Ni accumulation in both plant species. Further, the stimulation effect on plant biomass, chlorophyll, and protein content was concomitant with increased Fe and P assimilation from soil to plants. Further, the induction of catalase and peroxidase activities was also involved in the ability of SRS8 to increase the tolerance in both plant species under Ni stress. The findings suggest that strain SRS8 play an important role in promoting the growth and phytoextraction efficiency of R. communis and H. annuus, which may be used for remediation of metal contaminated sites.  相似文献   

20.
The phytotoxicity due to nickel (Ni) and its accumulation in castor (Ricinus communis L.) plant of Euphorbiaceae family resulting from its addition from low to very high levels to a swell-shrink clayey soil (Haplustert) was studied in a pot culture experiment. Nine levels of Ni (0, 10, 40, 80, 120, 160, 180, 200, 250 mg Ni kg(-1) soil) were applied. Crop was harvested at 45 days after sowing. At the higher Ni levels, beyond 200 mg Ni kg(-1) soil, reduced growth symptom was recorded. The concentration of Ni in plant parts increased with increasing dose of applied Ni. Nickel concentration in castor root ranged from traces (control) to 455 mg kg(-1) and was directly related to soil Ni concentration. At 200 mg Ni kg(-1) soil, dry matter yield of castor reduced to 10% of control plant. Significant changes were observed in the roots of castor treated with higher levels of Ni against control. The roots treated with Ni showed a decrease in number of cells in the cortex region. It also appeared that the cortex region consisted of elongated parenchymatous cells instead of the normal parenchymatous tissue as in the control plant. Regarding Ni accumulation capacity, castor plant was recorded as an accumulator (alpha = 0.11 and beta = 1.10). A laboratory study was also conducted in the experimental soil to know the different operationally defined fractions of Ni, which control the availability of Ni to castor. Different fractions of Ni present in this soil followed this order: Residual > Fe-Mn oxides > carbonate > organic > exchangeable > water soluble. Overall results depict that castor is a promising species which can be used as a potential plant for phytoremediation of contaminated soils and to improve soil quality and provide economical benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号