共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study 总被引:13,自引:5,他引:13
We have examined the structure of calsequestrin in three-dimensional images from deep-etched rotary-replicated freeze fractures of skeletal muscle fibers. We selected a fast-acting muscle because the sarcoplasmic reticulum has an orderly disposition and is rich in internal membranes. Calsequestrin forms a network in the center of the terminal cisternae and is anchored to the sarcoplasmic reticulum membrane, with preference for the junctional portion. The anchorage is responsible for maintaining calsequestrin in the region of the sarcoplasmic reticulum close to the calcium-release channels, and it corroborates the finding that calsequestrin and the spanning protein of the junctional feet may interact with each other in the junctional membrane. Anchoring filaments may be composed of a protein other than calsequestrin. 相似文献
2.
Neil R. Brandt Anthony H. Caswell Shu-Rong Wen Jane A. Talvenheimo 《The Journal of membrane biology》1990,113(3):237-251
Summary Isolated triadic proteins were employed to investigate the molecular architecture of the triad junction in skeletal muscle. Immunoaffinity-purified junctional foot protein (JFP), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), aldolase and partially purified dihydropyridine (DHP) receptor were employed to probe protein-protein interactions using affinity chromatography, protein overlay and crosslinking techniques. The JFP, an integral protein of the sarcoplasmic reticulum (SR) preferentially binds to GAPDH and aldolase, peripheral proteins of the transverse (T)-tubule. No direct binding of JFP to the DHP receptor was detected. The interactions of JFP with GAPDH and aldolase appear to be specific since other glycolytic enzymes associated with membranes do not bind to the JFP. The DHP receptor, an integral protein of the T-tubule, also binds GAPDH and aldolase. A ternary complex between the JFP and the DHP receptor can be formed in the presence of GAPDH. In addition, the DHP receptor binds to a previously undetectedM
r 95 K protein which is distinct from the SR Ca2+ pump and phosphorylaseb. TheM
r 95 K protein is an integral protein of the junctional domain of the SR terminal cisternae. It is also present in the newly identified strong triads (accompanying paper). From these findings, we propose a new model for the triad junction. 相似文献
3.
Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle 总被引:1,自引:8,他引:1
下载免费PDF全文

This study describes the biochemical composition of junctional feet in skeletal muscle utilizing a fraction of isolated triad junctions. [3H]Ouabain entrapment was employed as a specific marker for T-tubules. The integrity of the triad junction was assayed by the isopycnic density of [3H]ouabain activity (24-30% sucrose for free T-tubules, 38- 42% sucrose for intact triads). Trypsin, chymotrypsin, and pronase all caused separation of T-tubules from terminal cisternae, indicating that the junction is composed as least in part of protein. Trypsin and chymotrypsin hydrolyzed four proteins: the Ca2+ pump, a doublet 325,000, 300,000, and an 80,000 Mr protein. T-tubules which had been labeled covalently with 125I were joined to unlabeled terminal cisternae by treatment with K cacodylate. The reformed triads were separated from free T-tubules and then severed by passage through a French press. When terminal cisternae were separated from T-tubules, some 125I label was transferred from the labeled T-tubules to the unlabeled terminal cisternae. Gel electrophoresis showed that, although T-tubules were originally labeled in a large number of different proteins, only a single protein doublet was significantly labeled in the originally unlabeled terminal cisternae. This protein pair had molecular weights of 325,000 and 300,000 daltons. Transfer of label did not occur to a substantial degree without K cacodylate treatment. We propose that the transfer of 125I label from T-tubules to terminal cisternae during reformation and breakage of the triad junction is a property of the protein which spans the gap between T-tubules and terminal cisternae. 相似文献
4.
Compartmentalized ATP synthesis in skeletal muscle triads. 总被引:9,自引:0,他引:9
Isolated skeletal muscle triads contain a compartmentalized glycolytic reaction sequence catalyzed by aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. These enzymes express activity in the structure-associated state leading to synthesis of ATP in the triadic junction upon supply of glyceraldehyde 3-phosphate or fructose 1,6-bisphosphate. ATP formation occurs transiently and appears to be kinetically compartmentalized, i.e., the synthesized ATP is not in equilibrium with the bulk ATP. The apparent rate constants of the aldolase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reaction are significantly increased when fructose 1,6-bisphosphate instead of glyceraldehyde 3-phosphate is employed as substrate. The observations suggest that fructose 1,6-bisphosphate is especially effectively channelled into the junctional gap. The amplitude of the ATP transient is decreasing with increasing free [Ca2+] in the range of 1 nM to 30 microM. In the presence of fluoride, the ATP transient is significantly enhanced and its declining phase is substantially retarded. This observation suggests utilization of endogenously synthesized ATP in part by structure associated protein kinases and phosphatases which is confirmed by the detection of phosphorylated triadic proteins after gel electrophoresis and autoradiography. Endogenous protein kinases phosphorylate proteins of apparent Mr 450,000, 180,000, 160,000, 145,000, 135,000, 90,000, 54,000, 51,000, and 20,000, respectively. Some of these phosphorylated polypeptides are in the Mr range of known phosphoproteins involved in excitation-contraction coupling of skeletal muscle, which might give a first hint at the functional importance of the sequential glycolytic reactions compartmentalized in triads. 相似文献
5.
Junctional feet in tubulo-reticular junctions of crayfish muscle fibres are arranged tetragonally with a centre-to-centre spacing of 30-34 nm. The resulting density of 860-1110 feet per 1 micron 2 of the junctional membrane is similar to that reported for other animal species. Using data of a previous stereological study, there are 150-190 feet per 1 micron 2 of the total T-tubule surface and 6000-7800 feet per 100 microns 3 of the fibre volume. 相似文献
6.
The AMP-deaminases from chicken and rabbit muscle have been investigated by techniques which include sedimentation equilibrium, sodium dodecyl sulfate gel electrophoresis, amino acid analysis, NH2- and COOH-terminal analyses, and tryptic peptide mapping. The molecular weights of the native chicken (276,000) and rabbit (271,000) enzymes obtained by sedimentation equilibrium studies are in good agreement with values of 276,000 (chicken) and 275,000 (rabbit) calculated from amino acid analyses. The enzymes were reduced, carboxymethylated, and treated with either maleic or succinic anhydride in the presence of 6 M guanidine hydrochloride. Sodium dodecyl sulfate gel electrophoresis of the chemically modified enzymes resulted in a single electrophoretic species having an apparent molecular weight of 85,000. This observation is consistent with previous studies on the nonacylated enzymes and suggests that the muscle AMP-deaminases from chicken and rabbit do not contain noncovalent linkages which are readily disrupted by a large increase in negative charge. NH2-terminal analyses by the method of Stark and Amyth as well as the dansyl technique, indicate that the NH2-terminal positions of these enzymes are blocked. The enzymes are also resistant to digestion with carboxypeptidases A or B (or both) in the presence of sodium dodecyl sulfate. The most distinctive feature of the amino acid compositions of both the chicken and rabbit AMP-deaminases is the presende of eight half-cystine residues per 69,000 g of protein. Tryptic digests of the S-14C-carboxymethylated proteins were fractionated by ion exchange chromatography and high voltage electrophoresis. Six and five radioactiviely labeled peptides were detected in the electrophoretograms of the chicken and rabbit enzymes, respectively. This observation and the number of ninhydrinposition spots, together with the physical data on the molecular weights of the native enzymes and their subunits, suggest that the AMP-deaminases from chidken and rabbit muscle consist of four identical or very similar polypeptide chains. 相似文献
7.
8.
Subunit structure and properties of the glycogen-bound phosphoprotein phosphatase from skeletal muscle 总被引:3,自引:0,他引:3
B S Khatra 《The Journal of biological chemistry》1986,261(19):8944-8952
A high molecular weight phosphoprotein phosphatase was purified approximately 11,000-fold from the glycogen-protein complex of rabbit skeletal muscle. Polyacrylamide gel electrophoresis of the preparation in the absence of sodium dodecyl sulfate showed a major protein band which contained the activity of the enzyme. Gel electrophoresis in the presence of sodium dodecyl sulfate also showed a major protein band migrating at 38,000 daltons. The sedimentation coefficient, Stokes radius, and frictional ratio of the enzyme were determined to be 4.4 S, 4.4 nm, and 1.53, respectively. Based on these values the molecular weight of the enzyme was calculated to be 83,000. The high molecular weight phosphatase was dissociated upon chromatography on a reactive red-120 agarose column. The sedimentation coefficient, Stokes radius, and frictional ratio of the dissociated enzyme (termed monomer) were determined to be 4.1 S, 2.4 nm, and 1.05, respectively. The molecular weight of the monomer enzyme was determined to be 38,000 by polyacrylamide gel electrophoresis. Incubation of the high molecular weight phosphatase with a cleavable cross-linking reagent, 3,3'-dithiobis(sulfosuccinimidyl propionate), showed the formation of a cross-linked complex. The molecular weight of the cross-linked complex was determined to be 85,000 and a second dimension gel electrophoresis of the cleaved cross-linked complex showed that the latter contained only 38,000-dalton bands. Limited trypsinization of the enzyme released a approximately 4,000-dalton peptide from the monomers and dissociated the high molecular weight phosphatase into 34,000-dalton monomers. It is proposed that the catalytic activity of the native glycogen-bound phosphatase resides in a dimer of 38,000-dalton subunits. 相似文献
9.
Isolation, characterization, and localization of the spanning protein from skeletal muscle triads 总被引:3,自引:6,他引:3
下载免费PDF全文

A monoclonal antibody has been developed against the putative junctional protein or spanning protein (SP) from skeletal muscle triads. By immuno-affinity chromatography, we have purified this protein. The native protein has a molecular mass of 630-800 kD, as determined by gel filtration and rate zonal centrifugation. Within the limits of the methods used, the basic unit of the SP appears to be a dimer. In electron micrographs, it is shown to exhibit a circular profile with a diameter of approximately 100 A. In thin section analysis, the protein is frequently observed as parallel tracks of electron-dense particles bordering a translucent core. We suggest that the basic unit of the junctional structure is a dimer of 300-kD subunits and that four such entities constitute the intact SP. The purified protein has been used to develop polyclonal antibodies. By immunoelectron microscopy using immunogold probes, the SP has been localized to the junctional gap of the triad. By attaching the SP to an affinity resin, three proteins have been identified as forming associations with the SP. The Mrs of the proteins are 150, 62, and 38 kD; the 62-kD protein is calsequestrin. 相似文献
10.
We demonstrate for the first time in this study that triadic vesicles derived from skeletal muscle display a voltage dependence of depolarization-induced calcium release similar to that found in intact muscle. We confirm previous studies by Dunn (1989) which demonstrated that changes in extravesicular potassium induced membrane potential changes in isolated transverse tubules with the voltage sensitive dye DiSC(3)-5. Depolarization-induced calcium release was studied in isolated triadic vesicles through similar changes in extravesicular [K] while clamping extravesicular Ca++ to submicromolar concentrations. The amplitude of fast phase of calcium release, identified as depolarizationinduced calcium release, varied with the percentage of transverse tubules in the preparation (determined through 3 H-PN200-110 specific activity) and different levels of depolarization. Threshold activation of calcium release was obtained with a 40.5 mV potential change; maximal calcium release was obtained with a 75 to 81 mV potential change. Boltzmann fits to the normalized depolarization induced calcium release plotted against the membrane potential change yielded a voltage dependence (k = 4.5 mV per e-fold change) very similar to that found in intact muscle (k = 3–4 mV per e-fold change; Baylor, Chandler & Marshall 1978, 1983; Miledi et al., 1981). Substitution of methanesulfonate for propionate as the impermeant ion or addition of valinomycin in the depolarizing solutions had little effect on the voltage dependence of calcium release.We thank Dr. Judith Heiny for her helpful discussions about voltagesensitive fluorescent dyes. This work was supported by the American Heart Association (Ohio Affiliate) grant MV-90 and the State of Ohio Research Challenge Grant. 相似文献
11.
Annexin VI is a 68-kDa protein of the Annexin family, a group of Ca2+-dependent phospholipid-binding proteins widely distributed in mammalian tissues including skeletal muscle. We investigated a) which membrane system contributes Annexin VI to skeletal muscle triads, and b) whether Annexin VI removal affects triad integrity or function. Annexin VI was present in isolated triads and transverse tubules but not in heavy sarcoplasmic reticulum vesicles, indicating that Annexin VI binds to either free or triad-attached transverse tubules. Extraction with EGTA of Annexin VI from triads did not alter their migration as a single band in sucrose density gradients or their ouabain binding-site density, indicating that triad integrity does not require Annexin VI. Caffeine-induced Ca2+ release kinetics and Ca2+ uptake rates were likewise not affected by Annexin VI removal from triads, suggesting that Annexin VI is not involved in these functions. Annexin VI purified from rabbit skeletal muscle displayed Ca2+-dependent binding to liposomes containing phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine. Binding saturated at 1/20 molar ratio phosphatidylinositol 4,5-bisphosphate/phosphatidylcholine and was optimal at free [Ca2+] > or = 20 mM. Extraction of Annexin VI from triads did not affect the generation of phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, or phosphatidic acid by endogenous lipid kinases, suggesting that despite its capacity to bind to negatively charged phospholipids, Annexin VI does not affect the kinase activities responsible for their generation. 相似文献
12.
13.
Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle 总被引:43,自引:0,他引:43
The ryanodine receptor has been purified from junctional terminal cisternae of fast skeletal muscle sarcoplasmic reticulum (SR). The ryanodine receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and stabilized by addition of phospholipids. The solubilized receptor showed the same [3H]ryanodine binding properties as the original SR vesicles in terms of affinity, Ca2+ dependence, and salt dependence. Purification of the ryanodine receptor was performed by sequential column chromatography on heparin-agarose and hydroxylapatite in the presence of CHAPS. The purified receptor bound 393 +/- 65 pmol of ryanodine/mg of protein (mean +/- S.E., n = 5). The purified receptor showed three bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Mr of 360,000, 330,000, and 175,000. Densitometry indicates that these are present in the ratio of 2/1/1, suggesting a monomer Mr of 1.225 X 10(6) and supported by gel exclusion chromatography in CHAPS. Electron microscopy of the purified preparation showed the square shape of 210 A characteristic of and comparable in size and shape to the feet structures of junctional terminal cisternae of SR, indicating that ryanodine binds directly to the feet structures. From the ryanodine binding data, the stoichiometry between ryanodine binding sites to the number of feet structures is estimated to be about 2. Since the ryanodine receptor is coupled to Ca2+ gating, the present finding suggests that the ryanodine receptor and Ca2+ release channel represent a functional unit, the structural unit being the foot structure which, in situ, is junctionally associated with the transverse tubules. It is across this triad junction that the signal for Ca2+ release is expressed. Thus, the foot structure appears to directly respond to the signal from transverse tubules, causing the release of Ca2+ from the junctional face membrane of the terminal cisternae of SR. 相似文献
14.
Subunit structure of rabbit muscle pyruvate kinase 总被引:11,自引:0,他引:11
15.
The effectiveness of the nonmetabolizable second messenger analogue DL-myo-inositol 1,4,5-trisphosphorothioate (IPS3) described by Cooke, A. M., R. Gigg, and B. V. L. Potter, (1987b. Jour. Chem. Soc. Chem. Commun. 1525-1526.) was examined in triads purified from rabbit skeletal muscle. A Ca2+ electrode uptake-release assay was used to determine the size and sensitivity of the IPS3-releasable pool of Ca2+ in isolated triads. Uptake was initiated by 1 mM MgATP, pCa 5.8, pH 7.5 Release was initiated when the free Ca2+ had lowered to pCa approximately 7. We found that 5-25 microM myo-inositol 1,4,5-trisphosphate (IP3), and separately IPS3, consistently released 5-20% of the Ca2+ pool actively loaded into triads. Single channel recording was used to determine if ryanodine receptor Ca2+ release channels were affected by IPS3 at the same myoplasmic Ca2+ and IPS3 concentrations. Open probability of ryanodine receptor Ca2+ release channels was monitored in triads fused to bilayers over long periods (200 s) in the absence and following addition of 30 microM IPS3 to the same channel. At myoplasmic pCa approximately 7, IPS3 had no effect in the absence of MgATP (Po = 0.0094 +/- 0.001 in control and Po = 0.01 +/- 0.006 after IPS3) and slightly increased activity in the presence of 1 mM MgATP (Po = 0.024 +/- 0.03 in control and Po = 0.05 +/- 0.03 after IPS3). Equally small effects were observed at higher myoplasmic Ca2+. The onset of channel activation by IPS3 or IP3 was slow, on the time scale 20-60 s. We suggest that in isolated triads of rabbit skeletal muscle, IP3-induced release of stored Ca2+ is probably not mediated by the opening of Ca2+ release channels. 相似文献
16.
In skeletal muscle, L-type calcium channels (or dihydropyridine receptors, DHPRs) are coupled functionally to the calcium release channels of the sarcoplasmic reticulum (or ryanodine receptors, RyRs) within specialized structures called calcium release units (CRUs). The functional linkage requires a specific positioning of four DHPRs in correspondence of the four identical subunits of a single RyR type 1. Four DHPRs linked to the four binding sites of the RyR1 cytoplasmic domain (or foot), define the corners of a square, constituting a tetrad. RyRs self-assemble into ordered arrays and by associating with them, DHPRs also assemble into ordered arrays. The approximate location of the four DHPRs relative to the four identical subunits of a RyR-foot can be predicted on the basis of the relative position of tetrads and feet within the arrays. However, until recently one vital piece of information has been lacking: the orientation of the two arrays relative to one another. In this work we have defined the relative orientation of the RyR and DHPR arrays by directly superimposing replicas of rotary shadowed images of rows of feet, obtained from isolated SR vesicles, and replicas of tetrad arrays obtained by freeze-fracture. If the orientation for the two sets of images is carefully maintained, the superimposition provides specific constraints on the DHPR-RyR relative position. 相似文献
17.
Massimo Stefani Alessandra Modesti Guido Camici Giampaolo Manao Gianni Cappugi Andrea Berti Giampietro Ramponi 《Journal of Protein Chemistry》1986,5(5):307-321
The complete amino acid sequence of duck skeletal muscle acylphosphatase is presented. The sequence was studied by the manual Edman degradation of the complete series of tryptic peptides and the amino acid composition of peptic peptides. The NH2-terminus is acetylated, and the polypeptide consists of 102 amino acid residues. The sequence is compared with other known acylphosphatases from the skeletal muscle of several vertebrate species. 相似文献
18.
Summary Binding sites for three fucose specific lectins, Aleuria aurantia agglutinin (AAA), Lotus tetragonolobus agglutinin (LTA) and Ulex europeus I agglutinin (UEA I), were investigated in sections from normal human and rat muscles, in muscle from patients with Duchenne muscular dystrophy (DMD) and in denervated and devascularized rat muscle. In normal human and rat muscle AAA detected fucosylated glycocompounds in the sarcoplasm, sarcolemma, interfibre connective tissue and vascular structures. In normal human muscle addition of fucose to the AAA incubation medium or treatment of the sections with formaldehyde followed by periodic oxidation before lectin incubation strongly inhibited the staining at all sites other than endothelial cells. In normal rat muscle the same staining procedures strongly inhibited the AAA binding at all sites other than the sarcolemma. Incubation with LTA resulted in a diffuse reaction around the vascular structures in rat muscle, while in human muscle a moderate, homogeneous staining was present in all muscle fibres. Treatment of the sections with formaldehyde and periodic acid before incubation with LTA resulted in strongly labelled muscle capillaries in both human and rat muscle. The only elements in the muscle tissues that were stained with UEA I were human endothelial cells. In denervated and devascularized rat muscle incubation with AAA revealed a novel fucose expression that appeared intracellularly in some necrotic fibres. The AAA-positive fucose residues in the sarcolemma of normal muscle fibres that were resistant to periodic acid oxidation could not be shown by AAA in denervated muscle. In DMD muscle a cryptic sarcolemmal fucose expression could be shown with AAA. It is suggested that both the sarcoplasm and sarcolemma of diseased muscle fibres show altered fucose expression. 相似文献
19.
Subunit composition of the purified dihydropyridine binding protein from skeletal muscle 总被引:1,自引:0,他引:1
The dihydropyridine (DHP) receptor from rabbit skeletal muscle has been characterized by affinity labeling and purification. Two procedures were used for purification: one that was a procedure modified from that of Curtis and Catterall (1984) and one that employed an anti alpha 1 monoclonal antibody (Mab) affinity column. In addition, both digitonin and CHAPS solubilizations were utilized with each purification technique. The major findings are as follows: (1) In contrast to the behavior in digitonin, neither the 52K (beta) nor the 140K (alpha 2) polypeptide quantitatively copurifies with the 170K (alpha 1) polypeptide when the purification is carried out in CHAPS. This has been shown by use of both wheat germ and monoclonal antibody columns. The digitonin-extracted receptor complex bound to the Mab affinity column loses alpha 2 and beta when the digitonin is replaced by CHAPS, and when the complex is bound to a WGA column, a CHAPS wash causes dissociation of alpha 1, beta, and gamma from alpha 2. Loss of binding of dihydropyridines occurs with the CHAPS wash but can be partially restored by the addition of the CHAPS wash to the material eluted from the column with N-acetylglucosamine. (2) Although both detergents solubilized greater than 80% of the polypeptides associated with the DHP binding site, the ability of these proteins to bind dihydropyridines is reduced more by CHAPS treatment than by digitonin treatment, raising the possibility that subunit interactions contribute to high-affinity binding. Alternatively, CHAPS may remove tightly bound lipids necessary for binding or cause irreversible denaturation of the binding site.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. 总被引:8,自引:3,他引:8
下载免费PDF全文

Triads isolated from frog and rabbit skeletal muscle were equilibrated with different external [Ca2+], ranging from 0.025 to 10 mM. Vesicular calcium increased with external [Ca2+] as the sum of a linear plus a saturable component; the latter, which vanished after calsequestrin removal, displayed Bmax values of 182 and 132 nmol of calcium/mg of protein, with Kd values of 1.21 and 1.14 mM in frog and rabbit vesicles, respectively. The effect of luminal [Ca2+] on release kinetics in triads from frog and rabbit skeletal muscle was investigated, triggering release with 2 mM ATP, pCa 5, pH 6.8. In triads from frog, release rate constant (k) values increased sixfold after increasing luminal [Ca2+] from 0.025 to 3 mM. In triads from rabbit, k values increased 20-fold when luminal [Ca2+] increased from 0.05 to 0.7 mM. In both preparations, k values remained relatively constant (10-12 s-1) at higher luminal [Ca2+], with a small decrease at 10 mM. Initial release rates increased with luminal [Ca2+] in both preparations; in triads from rabbit the increase was hyperbolic, and in triads from frogs the increase was sigmoidal. These results indicate that, although triads from frog and rabbit respond differently, in both preparations luminal [Ca2+] has a distinctive effect on release, presumably by regulating sarcoplasmic reticulum calcium channels. 相似文献