首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The inhibitory effect of enterocin CCM 4231 (concentration 3200 AU ml-1) was used to control the growth of Listeria monocytogenes Ohio and Staphylococcus aureus in soy milk. The growth and bacteriocin (enterocin) production of producer strain CCM 4231 in soy milk was also checked. Bacteriocin production by CCM 4231 strain in soy milk was first detected after 2 h from the beginning of cultivation (100 AU ml-1). The stationary phase for CCM 4231 was reached after 6 h reaching 10.38 cfu ml-1 (log10) with a slight increase up to 24 h (10.43 cfu ml-1, log10), and the maximum bacteriocin production in soy milk (200 AU ml-1) was noted after 8 h of the beginning of cultivation with stability up to 24 h. The addition of enterocin CCM 4231 at 3200 AU ml-1 to a growing indicator strain, L. monocytogenes Ohio, in soy milk resulted in inhibition for 24 h. The high inhibitory effect of enterocin was found after 1 h and 2 h of its addition (in 5 h-6 h of cultivation), the difference between the experimental and the control samples (ES, CS) being 4.96 log cycles at 5 h and 5.15 log cycles at 6 h. Staphylococcus aureus was not fully inhibited, although a difference of 3.55 log cycles was found when ES and CS were compared at the end of cultivation (24 h). The pH was not influenced by enterocin addition. The inhibitory effect of enterocin CCM 4231 against L. monocytogenes Ohio in soy milk was probably bacteriocidal; while Staph. aureus was influenced bacteriostatically. In general, the observed inhibitory activity confirmed the possibility for further application of bacteriocins in food environments as the protective agents. Of course, legislation problems must be solved.  相似文献   

2.
The inhibitory effect of enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4, on Listeria monocytogenes strains Ohio and Scott A during themanufacture and ripening of Manchego cheese was investigated. Raw ewe's milk wasinoculated with ca 105 cfu ml−1 of L.monocytogenes and with 1% of a commercial lactic starter, 1% of an Ent. faecalis INIA 4 culture, or 1% of each culture. Manchego cheeses were manufactured according tousual procedures. Listeria monocytogenes Ohio counts decreased by 3 log units after8 h and by 6 log units after 7 d in cheese made from milk inoculated with Ent. faecalis INIA 4 or with both cultures, whereas no inhibition was recorded after 60 d in cheese made frommilk inoculated with commercial lactic starter. Listeria monocytogenes Scott A wasnot inhibited by enterocin 4 during cheese manufacture, but decreases of 1 log unit after 7 d andof 2 log units after 60 d were achieved in cheese made from milk inoculated with bothcommercial lactic starter and Ent. faecalis INIA 4.  相似文献   

3.
“Bryndza” is a traditional Slovak dairy product (type of soft cheese) made from sheep cheese which was ripened for 14 days. Because its manufacture, transporting and/or storing represent conditions which facilitate contamination, the effect of enterocin CCM4231 in “bryndza” was investigated with the aim to reduce the contaminant agents. “Bryndza” was divided into equal portions (50 g). The experimental sample (ES) as well as the control sample one (C1) were inoculated with Listeria innocua Li1 strain. The other control samples C2 and C3 were without Li1 strain. C3 control was selected as a reference control. ES and C2 portions were treated with purified enterocin CCM4231 in a concentration of 6400 AU/ml. Before the experimental inoculation, “bryndza” was checked for the presence of contaminant agents. The experiment lasted 1 week and the samples were stored in the refrigerator at 4 °C. Sampling was performed on day 1, on day 4 and on day 7. The control samples C2 and C3 were checked only on day 1 and then after 1 week. The following contaminant agents were detected in “bryndza” before its experimental inoculation with L. innocua Li1 strain: Escherichia coli in the amount 103 cfu/ml/g, Staphylococcus aureus (102 cfu/ml/g) and enterococci (104 cfu/ml/g). In the control sample C2, the number of E. coli was reduced to 102 cfu/ml/g. Enterococci and staphylococci were totally eliminated there. Concerning C3 control, natural decrease of bacteria was found and/or their unchanged counts. The value of pH (5) was stable during the whole experiment. In the experimental sample inoculated with Li1 strain, its counts were decreased immediately after enterocin CCM4231 addition approximately by one order of magnitude. This inhibitory effect was also detectable on day 4 by the difference of one order of magnitude between ES and C1. On day 7, 103 cfu/ml/g of Li1 strain were detected in both samples (ES, C1). The difference by one order of magnitude indicated, an inhibitory effect of enterocin CCM4231 in “bryndza”. However, bacteriocin activity was not determined by laboratory analyses.  相似文献   

4.
"Bryndza" is a traditional Slovak dairy product (type of soft cheese) made from sheep cheese which was ripened for 14 days. Because its manufacture, transporting and/or storing represent conditions which facilitate contamination, the effect of enterocin CCM4231 in "bryndza" was investigated with the aim to reduce the contaminant agents. "Bryndza" was divided into equal portions (50 g). The experimental sample (ES) as well as the control sample one (C1) were inoculated with Listeria innocua Li1 strain. The other control samples C2 and C3 were without Li1 strain. C3 control was selected as a reference control. ES and C2 portions were treated with purified enterocin CCM4231 in a concentration of 6400 AU/ml. Before the experimental inoculation, "bryndza" was checked for the presence of contaminant agents. The experiment lasted 1 week and the samples were stored in the refrigerator at 4 degrees C. Sampling was performed on day 1, on day 4 and on day 7. The control samples C2 and C3 were checked only on day 1 and then after 1 week. The following contaminant agents were detected in "bryndza" before its experimental inoculation with L. innocua Li1 strain: Escherichia coli in the amount 10(3) cfu/ml/g, Staphylococcus aureus (10(2) cfu/ml/g) and enterococci (10(4) cfu/ml/g). In the control sample C2, the number of E. coli was reduced to 10(2) cfu/ml/g. Enterococci and staphylococci were totally eliminated there. Concerning C3 control, natural decrease of bacteria was found and/or their unchanged counts. The value of pH (5) was stable during the whole experiment. In the experimental sample inoculated with Li1 strain, its counts were decreased immediately after enterocin CCM4231 addition approximately by one order of magnitude. This inhibitory effect was also detectable on day 4 by the difference of one order of magnitude between ES and C1. On day 7, 10(3) cfu/ml/g of Li1 strain were detected in both samples (ES, C1). The difference by one order of magnitude indicated, an inhibitory effect of enterocin CCM4231 in "bryndza". However, bacteriocin activity was not determined by laboratory analyses.  相似文献   

5.
Cheddar cheese was prepared with Lactococcus lactis subsp. lactis MM217, a starter culture which contains pMC117 coding for pediocin PA-1. About 75 liters of pasteurized milk (containing ca. 3.6% fat) was inoculated with strain MM217 (ca. 106 CFU per ml) and a mixture of three Listeria monocytogenes strains (ca. 103 CFU per ml). The viability of the pathogen and the activity of pediocin in the cheese were monitored at appropriate intervals throughout the manufacturing process and during ripening at 8°C for 6 months. In control cheese made with the isogenic, non-pediocin-producing starter culture L. lactis subsp. lactis MM210, the counts of the pathogen increased to about 107 CFU per g after 2 weeks of ripening and then gradually decreased to about 103 CFU per g after 6 months. In the experimental cheese made with strain MM217, the counts of L. monocytogenes decreased to 102 CFU per g within 1 week of ripening and then decreased to about 10 CFU per g within 3 months. The average titer of pediocin in the experimental cheese decreased from approximately 64,000 arbitrary units (AU) per g after 1 day to 2,000 AU per g after 6 months. No pediocin activity (<200 AU per g) was detected in the control cheese. Also, the presence of pMC117 in strain MM217 did not alter the cheese-making quality of the starter culture, as the rates of acid production, the pH values, and the levels of moisture, NaCl, and fat of the control cheese and the experimental cheese were similar. Our data revealed that pediocin-producing starter cultures have significant potential for protecting natural cheese against L. monocytogenes.  相似文献   

6.
A consortium of bacterial genera from raw and digested pig slurry (pig farm at Figa, Slovakia; input and output samples) was counted from February to October 2000. The total counts of enterococci and staphylococci were well-balanced in input samples, with visible reduction of cells in May (3.22 and/or 4.21 log c.f.u./ml). Among organisms important from a sanitary perspective only a slight reduction after standard slurry treatment was found between input and output samples (2.0 log cycles), with no effect in April and May. However, their counts were high (8.1–9.01 log c.f.u./ml). Yersinia sp. were detected in rather high counts (6.47; 6.39 log c.f.u./ml). But these species, as well as pseudomonads and Aeromonas sp. were very effectively reduced by standard slurry treatment. Enterocins (CCM4231, V24 and EC24) produced by our own isolates of enterococci were used to determine the susceptibility of selected microbial strains from slurry to those enterocins. For quantifying the inhibitory activity of enterocins, the titre (expressed in activity-arbitrary units [AU/ml]), corresponding to the reciprocal of the highest dilution showing a distinct inhibition zone of the indicator, was determined. Under the conditions used, enterocins used were active against the selected microbial consortium by activity from 100 up to 800 AU/ml. Moreover, enterocin V24 reduced the growth of Enterobacter cloacae ECL751 as well as Pseudomonas sp. minimally with differences of 1. 54 and 2.2 log cycles.  相似文献   

7.
The effect of bacteriocin, piscicolin 126, on the growth of Listeria monocytogenes and cheese starter bacteria was investigated in milk and in Camembert cheese manufactured from milk challenged with 10(2) cfu ml(-1) L. monocytogenes. In milk incubated at 30 degrees C, piscicolin 126 added in the range of 512-2,048 AU ml(-1) effectively inhibited growth of L. monocytogenes for more than 20 d when challenged with approximately 10(2) cfu ml(-1) L. monocytogenes. At higher challenge levels (10(4) and 10(6) cfu ml(-1)), piscicolin 126 reduced the viable count of L. monocytogenes by 4-5 log units immediately after addition of the bacteriocin; however, growth of Listeria occurred within 24 h. The minimum inhibitory concentration (MIC) of piscicolin 126 against lactic acid cheese starter bacteria was generally greater than 204,800 AU ml(-1) , and the viable count and acid production of these starter cultures in milk were not affected by the addition of 2,048 AU ml(-1) piscicolin 126. Camembert cheeses made from milk challenged with L. monocytogenes and with added piscicolin 126 showed a viable count of L. monocytogenes 3-4 log units lower than those without piscicolin 126. Inactivation of piscicolin 126 by proteolytic enzymes from cheese starter bacteria and mould together with the emergence of piscicolin 126-resistant isolates was responsible for the recovery of L. monocytogenes in the cheeses during ripening.  相似文献   

8.
The antilisterial efficiency of three bacteriocins from lactic acid bacteria, lactocin 705 (produced by L. casei CRL705, 17000 AU/ml), enterocin CRL35 (produced by E. faecium CRL35, 17000 AU/ml), and nisin (2000 IU/ml), was tested in broth, individually and in combination against Listeria monocytogenes and Listeria innocua. Both Listeria species showed an initial decrease in viable counts followed by the regrowth of the survivors after 1 h in the presence of each bacteriocin. A greater antilisterial effect was observed when the bacteriocins were combined in pairs, maximal inhibition being reached when nisin was involved. When a mix of the three bacteriocins was used, no survivors were observed after 24 h of incubation. Similar results were obtained when the bacteriocin combinations were tested in a meat system, indicating that the use of more than one LAB bacteriocin in combination may be effective in preventing the spontaneous emergence of a bacteriocin-resistant Listeria population. Received: 17 March 2000 / Accepted: 26 June 2000  相似文献   

9.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 10(7) CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening.  相似文献   

10.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 10(5) CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 10(6) CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10 degrees C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

11.
Aims: Enterocin A is an example of a class IIa bacteriocin with potent anti‐listerial activity. This study was initiated with a view to harnessing this activity, through heterologous production by a lactococcal starter strain, to limit levels of Listeria monocytogenes in a food (Cottage cheese). Methods and Results: Plasmid pEnt02 (containing entA, I, T and D genes under the control of a constitutive promoter) was introduced into a Lactococcus lactis strain capable of fermenting lactose. When this bacteriocin‐producing starter was used in combination with a non‐enterocin A producer, thereby compensating for an associated reduction in acid production, during a Cottage cheese fermentation, a decrease in L. monocytogenes (tagged with lux genes for convenience) levels was evident. Conclusions: Enterocin A, heterologously produced by a food grade lactic acid bacteria (LAB), was therefore shown to have potential for use as a biocontrol agent in food. Significance and Impact of the Study: Many of the most active anti‐listerial compounds identified to date are enterocins. However, because of Enterococcus‐associated concerns, the use of these antimicrobials in a food setting has been curtailed. Although enterocins have been heterologously produced in LAB to overcome this problem, this study represents the first occasion upon which the benefits of such heterologous production have been demonstrated in a food context.  相似文献   

12.
The growth of Listeria monocytogenes WSLC 1364, originating from a cheese-borne outbreak, was examined in the presence and in the absence of a pediocin AcH-producing Lactobacillus plantarum strain on red smear cheese. Nearly complete inhibition was observed at 102 CFU of L. monocytogenes per ml of salt brine solution, while contamination with Listeria mutants resistant to pediocin resulted in high cell counts of the pathogen on the cheese surface. The inhibition was due to pediocin AcH added together with the L. plantarum culture to the brine solution but not to bacteriocin production in situ on cheese. Pediocin resistance developed in vitro at different but high frequencies in all 12 L. monocytogenes strains investigated, and a resistant mutant remained stable in a microbial surface ripening consortium over a 4-month production process in the absence of selection pressure. In conclusion, the addition of a L. plantarum culture is a potent measure for combating Listeria in a contaminated production line, but because of the potential development of resistance, it should not be used continuously over a long time in a production line.  相似文献   

13.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 105 CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 106 CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10°C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

14.
Quantitative real-time PCR may be a rapid and automated procedure for detection of bacterial pathogens from food samples. Nevertheless, when testing the effects of antimicrobials on the viability of bacterial pathogens in foods, we found that DNA from dead cells interfered greatly in the detection of viable Listeria monocytogenes after treatment with the broad-spectrum bacteriocin enterocin AS-48. To overcome this problem, a quantitative real-time PCR (qRT-PCR) assay based on bacterial mRNA was adapted to quantify viable L. monocytogenes in food after bacteriocin treatments. The procedure allowed a better and faster estimation of viable cells compared to PALCAM viable cell counts when the threshold level was 2 log units/g of food, while PALCAM viable count allowed detection of one log unit/g. This procedure may be useful to verify the efficacy of bacteriocins against L. monocytogenes in foods.  相似文献   

15.
Five strains of Listeria monocytogenes, four strains of Listeria innocua and a strain of Listeria seeligeri showed different sensitivities to lactocin 705 (17 000 AU ml–1), enterocin CRL35 (8500 AU ml–1) and nisin (2500 IU ml–1) at different pHs (5, 6 and 7). The susceptibility of Listeria strains to bacteriocins at each pH was strain dependent, and it was enhanced at the low pH. L. monocytogenes had enhanced nisin tolerance while the non-nisin bacteriocins were more inhibitory with viability losses of 3–3.4 in contrast with 1.5–1.8 log cycles, respectively. Lower viability loss values were obtained with L. innocua strains with all three bacteriocins while L. seeligeri was more sensitive to nisin than to lactocin 705 or enterocin CRL35.  相似文献   

16.

The effects of non-authochtonous Enterococcus faecium AL41 = CCM 8558, enterocin M-producing and probiotic strain were tested on the microbiota, phagocytic activity, hydrolytic enzymes, biochemical parameters and dry matter in horses based on its previous benefits demonstrated in other animals. E. faecium CCM 8558 sufficiently colonized the digestive tract of horses. At day 14, its counts reached 2.35 ± 0.70 CFU/g (log 10) on average. The identity of CCM 8558 was confirmed by means of PCR after its re-isolation from horse faeces. The inhibition activity of CCM 8558 was demonstrated against Gram-negative aeromonads, counts of which were significantly reduced (P < 0.001). After 14 days application of CCM 8558, a tendency towards increased phagocytic activity (PA) was measured; PA value was 73.13% ± 8.55 on average at day 0/1; at day 14, it was 75.11 ± 8.66%. Cellulolytic, xylanolytic and pectinolytic activity in horse faeces was significantly increased (P < 0.001) at day 14 (after CCM 8558 application) and amylolytic activity as well (P < 0.01) compared to day 0/1. Inulolytic activity increased with mathematical difference 1.378. Dry matter value reached 20.81 ± 2.29% on average at day 0/1; at day 14, it was 20.77 ± 2.59% (P = 0.9725). Biochemical parameters were influenced mostly in the physiological range. These results achieved after application of CCM 8558 in horses are original, giving us further opportunity to continue these studies, to measure additional parameters and to show the benefits of CCM 8558 application in horses.

  相似文献   

17.
Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 10(4) to 10(5) CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 10(3) to 10(4) cells of M. avium subsp. paratuberculosis per g will be inactivated.  相似文献   

18.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 107 CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening.  相似文献   

19.
F. VILLANI, G. SALZANO, E. SORRENTINO, O. PEPE, P. MARINO AND S. COPPOLA. 1993. Enterococcus faecalis 226, isolated from natural whey cultures utilized as starters in the manufacture of mozzarella cheese from water-buffalo milk, produces a bacteriocin designated enterocin 226NWC. The bacteriocin was isolated from culture supernatant fluids of the producer strain and was active against strains of the same species and Listeria monocytogenes, but not against useful lactic acid bacteria. Enterocin 226NWC is a protein with an apparent molecular weight of about 5800; it is relatively heat-stable and has a bactericidal mode of action. Listeria monocytogenes, growing in the presence of the enterocin 226NWC producer strain in broth and in reconstituted skim milk, was inhibited.  相似文献   

20.
Enterocin was used to control the growth of Staphylococcus aureus strains SA1 and Oxford 209P in Sunar (milk nourishment for suckling babies) and during the yogurt-making process. Reduction by three orders of magnitude was noted in the growth of SA1 strain in Sunar milk nourishment between the enterocin-containing (ES) and the control samples (CS) at 1-d cultivation. An inhibitory effect of enterocin was observed when surviving of SA1 cells were checked 6 h after the start of cultivation (2 h after enterocin application; enterocin was applied after 4 h). Decrease in the count of Oxford 209P strain in yogurt was detected in ES after 1 d of storage in comparison with CS (10(3) and 10(0) CFU mL-1 g-1). Thus a decrease by three orders of magnitude was found between ES and CS at the time mentioned. On the other hand, no bacteriocin activity was detected in ES after 1 d. Activity was detected only immediately after enterocin addition to ES (400 AU/mL) as well as after 1 and 3 1/2 h (200 AU/mL). Although the slight regrowth of the indicator was obtained up to 1 week of yogurt storage, the difference between ES and CS persisted. The lowest pH of the final yogurt product was noted in the reference yogurt sample but differences among the pH values of yogurt samples were not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号