首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved 2- to 3-fold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides.  相似文献   

2.
A biotin-polyethylene glycol (PEG)-epidermal growth factor (EGF) conjugate was immobilized onto the surface of avidin-modified adenovirus (ADV-Avi) via biotin-avidin interaction to deliver ADV specifically to EGF receptor over-expressing cancer cells. ADV-Avi/biotin-PEG-EGF complexes showed greatly enhanced intracellular uptake of ADV particles for an EGF receptor positive cell line (A431 cells), compared to naked or PEG alone immobilized ADV. ADV coding an exogenous GFP gene was used to quantitatively evaluate the level of GFP expression. ADV-Avi/biotin-PEG-EGF complexes also exhibited significantly increased extent of GFP expression for A431 cells, but not for MCF-7 cells (an EGF receptor deficient cell line), suggesting that retargeting of ADV to specific cells occurred by tethering of a cell-specific targeting ligand to the distal end of a PEG chain anchored onto the surface of ADV. This study demonstrates that ADV-Avi/biotin-PEG-EGF construct systems can be applied for cell-specific delivery of ADV with simultaneously reducing innate immune responses.  相似文献   

3.
Mok H  Park TG 《Biopolymers》2008,89(10):881-888
A novel self-crosslinked and reducible peptide was synthesized for stable formation of nanoscale complexes with an siRNA-PEG conjugate to enhance transfection efficiency in serum containing condition without compromising cytotoxicity. A fusogenic peptide, KALA, with two cysteine residues at both terminal ends was crosslinked via disulfide linkages under mild DMSO oxidation condition. The reducible crosslinked KALA (cl-KALA) was used to form nano-complexes with green fluorescent protein (GFP) siRNA. Size and morphology of various polyelectrolyte complexes formulated with KALA and cl-KALA were comparatively analyzed. cl-KALA exhibited more reduced cell cytotoxicity and formed more stable and compact polyelectrolyte complexes with siRNA, compared with naked KALA and polyethylenimine (PEI), probably because of its increased charge density. The extent of gene silencing was quantitatively evaluated using MDA-MB-435 cells. cl-KALA/siRNA complexes showed comparable gene silencing efficiency with those of cytotoxic PEI. In a serum containing medium, cl-KALA/siRNA-PEG conjugate complexes exhibited superior gene inhibition because of the shielding effect of PEG on the surface. The formulation based on the self-crosslinked fusogenic peptide could be used as a biocompatible and efficient nonviral carrier for siRNA delivery. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 881-888, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

4.
We have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions. Is a naked ODN able to enter the cell? Does the virus play a role in ODN entry? The uptake of several ODNs (93del, 60del(sc), TBA, T30923) was evaluated and then tracked by labeling the ODN with a fluorescent dye and assessing its intracellular localization by confocal microscopy. A significant level of cellular uptake of free ODN was observed in several cell lines: HeLa epithelial cells, Huh7 hepatic cells, and H9 lymphocytes, and was detected for all ODNs tested except for TBA. Striking differences were observed when naked ODNs were added to cell in the presence or absence of the virus. When HIV-1 virions were present a sharp increase in cellular fluorescence was observed. These results strongly suggest a role for HIV-1 virions in the uptake of certain ODNs.  相似文献   

5.
Antisense oligonucleotides provide a promising therapeutic approach for several disorders including cancer. Chemical stability, controlled release, and intracellular delivery are crucial factors determining their efficacy. Gels composed of nanofibrous peptide network have been previously suggested as carriers for controlled delivery of drugs to improve stability and to provide controlled release, but have not been used for oligonucleotide delivery. In this work, a self-assembled peptide nanofibrous system is formed by mixing a cationic peptide amphiphile (PA) with Bcl-2 antisense oligodeoxynucleotide (ODN), G3139, through electrostatic interactions. The self-assembly of PA-ODN gel was characterized by circular dichroism, rheology, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM images revealed establishment of the nanofibrous PA-ODN network. Due to the electrostatic interactions between PA and ODN, ODN release can be controlled by changing PA and ODN concentrations in the PA-ODN gel. Cellular delivery of the ODN by PA-ODN nanofiber complex was observed by using fluorescently labeled ODN molecule. Cells incubated with PA-ODN complex had enhanced cellular uptake compared to cells incubated with naked ODN. Furthermore, Bcl-2 mRNA amounts were lower in MCF-7 human breast cancer cells in the presence of PA-ODN complex compared to naked ODN and mismatch ODN evidenced by quantitative RT-PCR studies. These results suggest that PA molecules can control ODN release, enhance cellular uptake and present a novel efficient approach for gene therapy studies and oligonucleotide based drug delivery.  相似文献   

6.
It has been shown that extracellular glycosaminoglycans (GAGs) limit the gene transfer by cationic lipids and polymers. The purpose of this study was to clarify how interactions with anionic GAGs (hyaluronic acid and heparan sulfate) modify the cellular uptake and distribution of lipoplexes and polyplexes. Experiments on cellular DNA uptake and GFP reporter gene expression showed that decreased gene expression can rarely be explained by lower cellular uptake. In most cases, the cellular uptake is not changed by GAG binding to the lipoplexes or polyplexes. Reporter gene expression is decreased or blocked by heparan sulfate, but it is increased by hyaluronic acid; this suggests that intracellular factors are involved. Confocal microscopy experiments demonstrated that extracellular heparan sulfate and hyaluronic acid are taken into cells both with free and DNA-associated carriers. We conclude that extracellular GAGs may alter both the cellular uptake and the intracellular behavior of the DNA complexes.  相似文献   

7.
The surface of adenovirus (ADV) was modified with folate-poly(ethylene glycol) (FOL-PEG) conjugate to overcome the inherent problems associated with viral gene therapy. The ADV coding the green fluorescent protein (GFP) gene was used to immobilize PEG or FOL-PEG conjugate on the viral surface to comparatively evaluate their extents of retargeting and immune response, as compared to those of naked ADV. The FOL-PEG immobilized ADV exhibited a greatly enhanced level of GFP expression than naked or PEG immobilized ADV for a folate receptor overexpressing cell line (KB cells), but not for a folate receptor deficient cell line (A549 cells), suggesting that the retargeting of ADV could be achieved by immobilizing FOL-PEG conjugate. The ADV immobilized with PEG or FOL-PEG also significantly lowered innate immune response, as judged from the amount of interleukin 6 released from macrophage cells.  相似文献   

8.
An antisense oligodeoxynucleotide (ODN) delivery system based on polyelectrolyte complex (PEC) micelles composed of an ODN-poly(ethylene glycol) (PEG) conjugate and polyethylenimine (PEI) was demonstrated. The PEC micelles having a core/shell structure were spontaneously formed in an aqueous solution by ionic interactions between ODN part in the conjugate and PEI. The ODN/PEI polyelectrolyte complex formed an inner core while PEG chains surrounded it as a shell. The morphology of the micelles was visualized as a separate sphere by atomic force microscopy (AFM). When the micelles containing a c-raf antisense ODN were intravenously administered into tumor-bearing nude mice, significant antitumor activities against human lung cancer were observed. The intravenously injected micelles also showed significantly higher accumulation level in the solid tumor region compared to that of naked ODN.  相似文献   

9.
In order to evaluate the ability of the cell-penetrating alpha-helical amphipathic model peptide KLALKLALKALKAALKLA-NH(2) (MAP) to deliver peptide nucleic acids (PNAs) into mammalian cells, MAP was covalently linked to the 12-mer PNA 5'-GGAGCAGGAAAG-3' directed against the mRNA of the nociceptin/orphanin FQ receptor. The cellular uptake of both the naked PNA and its MAP-conjugate was studied by means of capillary electrophoresis combined with laser-induced fluorescence detection, confocal laser scanning microscopy and fluorescence-activated cell sorting. Incubation with the fluorescein-labelled PNA-peptide conjugate led to three- and eightfold higher intracellular concentrations in neonatal rat cardiomyocytes and CHO cells, respectively, than found after exposure of the cells to the naked PNA. Correspondingly, pretreatment of spontaneously-beating neonatal rat cardiomyocytes with the PNA-peptide conjugate and the naked PNA slowed down the positive chronotropic effect elicited by the neuropeptide nociceptin by 10- and twofold, respectively. The main reasons for the higher bioavailability of the PNA-peptide conjugate were found to be a more rapid cellular uptake in combination with a lowered re-export and resistance against influences of serum.  相似文献   

10.
α-Aminoisobutyric acid (Aib)-containing peptide analogs derived from TV-XIIa, a cell-penetrating peptide (CPP), were synthesized to explore structure-activity relationships. The replacement of Aib at position 1, 5, or 9 in the TV-XIIa amino acid sequence with alanine (Ala) suppressed the cellular uptake, whereas the simultaneous substitution of the two proline (Pro) residues at positions 6 and 10 with Aib (P-IV) considerably increased the cellular uptake. In order to explore the potential use of the Aib-containing peptide analogs for the cellular delivery of oligonucleotides (ODNs), we synthesized a covalent conjugate (P-IV-AON) of a 15-mer antisense ODN, which is complementary to luciferase gene, with P-IV, and the antisense effect of the P-IV-AON conjugate on luciferase expression in A549 cells was examined. Luciferase expression was decreased in the presence of the conjugate upon treatment with the reaction buffer at the concentrations of 5 and 10 μM.  相似文献   

11.
For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six‐arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG‐siRNA). The 6PEG‐siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG‐siRNA‐Hph1). The 6PEG‐siRNA‐Hph1 conjugate was electrostatically complexed with cationic self‐crosslinked fusogenic KALA peptide (cl‐KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG‐siRNA‐Hph1/cl‐KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA‐MB‐435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
13.
In search of new oligodeoxynucleotide (ODN) delivery agents, we evaluated novel peptides derived from core peptide H-GLRILLLKV-OH (CP). CP is a fragment designed from the T-cell antigen receptor (TCR) alpha-chain transmembrane sequence. CP was able to enter cells including T-cells and inhibited interleukin-2 (IL-2) production. To examine the effect of increased lipophilicity on cellular uptake and activity of CP, a lipoamino acid (2-aminododecanoic acid) was incorporated into peptide CP resulting in 2-aminodecanoyl-CP (LP). The toxicity of CP and LP was assessed by measuring the haemolytic activity. Neither compound caused any haemolysis of red blood cells. We have also compared the biological activities of the CP and LP. Using a T-cell antigen presentation assay, the more lipophilic LP caused greater inhibition of IL-2 production than the parent CP in the antigen stimulated T-cells. The LP also showed increased permeability than CP in the Caco-2 cell assay. We utilised the enhanced cell permeability property of LP in oligodeoxynucleotide ODN1 delivery. Isothermal titration calorimetry (ITC) suggested that CP and LP complex with ODN1 in a 12:1 (CP:ODN1) and 15:1 (LP:ODN1) ratio. These complexes were then transfected into human retinal pigment epithelial cells. The level of transfection was measured by the decreased production of the protein human vascular endothelial growth factor (hVEGF). The results revealed greater transfection efficiency for both CP and LP (47%, 55% more inhibition) compared to commercially available transfection agent cytofectin GSV. These results suggested that the CP and particularly its lipophilic analogue LP have the potential to be used as oligodeoxynucleotide delivery systems.  相似文献   

14.
Manipulation of the genetic machinery of cells both in vitro and in vivo is becoming an ever more important means of elucidating pathways of molecular and cellular biochemistry. In addition, gene therapy has been proposed as a novel and potentially powerful treatment for both inherited and acquired diseases. Successful gene transfer and gene blockade generally depend on high efficiency delivery of exogenous DNA or RNA into living cells, and much effort has therefore been focused on the development of methods for achieving this delivery in a safe and effective manner. We describe here our application of fusigenic Sendai virus (HVJ)-liposome technology toward the effective delivery of DNA into vascular smooth muscle cells (VSMC) in cell culture. Cellular uptake and intracellular distribution of oligodeoxynucleotide (ODN) after transfection with HVJ-liposome complexes was characterized using fluorescent (FITC)-labeled ODN, and the biologic effect of HVJ-liposome mediated transfection was demonstrated via inhibition of DNA synthesis in cultured VSMC using antisense ODN against basic fibroblast growth factor.  相似文献   

15.
In this study, dimerized siRNAs linked by a cleavable disulfide bond were synthesized for efficient intracellular delivery and gene silencing. The reducible dimerized siRNAs showed far enhanced complexation behaviors with cationic polymers as compared to monomeric siRNA at the same N/P ratio, as demonstrated by microscopic techniques and gel characterization. Dimerized siRNAs targeting green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) were complexed with linear polyethylenimine (LPEI), and treated to various cell lines to examine gene transfection efficiencies. In comparison to monomer siRNA/LPEI complexes, dimeric siRNA/LPEI complexes showed greatly enhanced cellular uptake and gene silencing effects in vitro. These results were mainly due to the higher charge density and promoted chain flexibility of the dimerized siRNAs, providing more compact and stable siRNA complexes. In addition, the conjugation strategy of reducible siRNA dimers was further extended: poly(ethylene glycol) (PEG)-modified dimerized siRNAs and heterodimers of siRNAs targeting two different genes (e.g., GFP and VEGF) were synthesized, and their gene silencing efficiencies were characterized. The dimerized siRNA complex system holds great potential for in vivo systemic gene therapy.  相似文献   

16.
Cell specific gene silencing effects of antisense oligodeoxynucleotide (AS-ODN), synthetic small interfering RNA (siRNA-S), and siRNA expressing plasmid (siRNA-P) were comparatively evaluated. Poly(ethylenimine) (PEI) and PEI-graft-poly(ethylene glycol)-folate (PEI-PEG-FOL) conjugate were used to form nanosized polyelectrolyte complexes with the above three nucleic acids coding for inhibition of green fluorescent protein (GFP) expression. The three nucleic acid complexes formulated with either PEI or PEI-PEG-FOL had comparable sizes and surface zeta potential values. Among the three inhibitory nucleic acids, siRNA-S, when complexed with PEI-PEG-FOL, exhibited the most dose-effective and fastest gene silencing effect for FOL receptor overexpressing KB cells, because the siRNA-S could be directly delivered, via FOL receptor-mediated endocytosis, into the cytoplasm compartment where the degradation processing of target GFP mRNA occurred in a sequence-specific manner.  相似文献   

17.
18.
We report a study of the behavior of oligodeoxyribonucleotide (ODN)/amphotericin B3-(N'-dimethylamino)propylamide (AMA) complexes, in the presence of lipid monolayers and large unilamellar vesicles. This study follows the recent discovery of the capacity of AMA, as a new cationic vector, to enhance ODN cellular uptake and efficacy. It aims at investigating the internalization mode of a nucleic acid by AMA. A first study at the air-water interface of AMA and AMA/ODN by surface pressure measurement shows that only free AMA would adsorb at the air-water interface. Second, in the presence of zwitterionic phospholipid- and sterol-containing mixture, ODN-AMA interactions in solution would be higher than lipid-AMA interactions at the interface. In monolayer or with large unilamellar vesicles, AMA monomers adsorb mainly at the phospholipid interface. These results favor a crossing mechanism through AMA channel formation, despite the size of ODN.  相似文献   

19.
A polyelectrolyte complex micelle (PECM)-based delivery system for targeting folate (FOL) receptor overexpressing tumor cells is demonstrated using poly(ethylene glycol) (PEG)-conjugated oligonucleotide (ODN). The tumor targeting property was conferred to the PECM by tethering a folate moiety to the distal end of the PEG segment in an anti-sense green fluorescent protein (GFP) ODN-PEG conjugate. Nanoscale PECMs were spontaneously produced from ionic interactions between the ODN-PEG-FOL conjugate and a cationic lipid, lipofectamine (Lf). When treated with FOL receptor overexpressing cells (KB), the PCEMs caused a significant reduction in GFP expression in a dose-dependent manner. This effect was not observed in FOL receptor deficient cells (A549). The enhanced transfection of ODN-PEG-FOL/Lf PECMs to KB cells was caused by FOL receptor mediated endocytosis. The efficiency of target-specific gene suppression by ODN-PEG-FOL/Lf PECMs was maintained even in the presence of 10% fetal bovine serum in the transfection medium.  相似文献   

20.
CpG oligodeoxynucleotide (CpG ODN) cellular uptake into endosomes, the rate-limiting step of Toll-like receptor 9 (TLR9) signaling, is critical in eliciting innate immune responses. ADP-ribosylation factor 6 (ARF6) is a member of the Ras superfamily, which is critical to a wide variety of cellular events including endocytosis. Here, we found that inhibition of ARF6 by dominant mutants and siRNA impaired CpG ODN-mediated responses, whereas cells expressing the constitutively active ARF6 mutant enhanced CpG ODN-induced cytokine production. Inhibition of ARF6 impaired TLR9 trafficking into endolysosomes, thereby inhibiting proceed functional cleavage of TLR9. Additional studies showed that CpG ODN uptake was increased in ARF6-activated cells but impaired in ARF6-defective cells. Furthermore, cells pretreated with CpG ODN but not GpC ODN had increased CpG ODN uptake due to CpG ODN-induced ARF6 activity. Further studies with ARF6-defective and ARF6-activated cells demonstrated that class III phosphatidylinositol 3-kinases (PI3K) was required for downstream ARF6 regulation of CpG ODN uptake. Together, our findings demonstrate that a novel class III PI3K-ARF6 axis pathway mediates TLR9 signaling by regulating the cellular uptake of CpG ODN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号