首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An oligonucleosome 12-mer was reconstituted in the absence of linker histones, onto a DNA template consisting of 12 tandemly arranged 208-base pair fragments of the 5 S rRNA gene from the sea urchin Ly-techinus variegatus (Simpson, R. T., Thoma, F. S., and Burbaker, J. M. (1985) Cell 42, 799-808). The ionic strength-dependent folding of this nucleohistone complex was compared with that of a native oligonucleosome fraction obtained from chicken erythrocyte chromatin, which had been carefully stripped of linker histones and fractionated in sucrose gradients. The DNA of this native fraction exhibited a narrow size distribution centered around the length of the 208-12 DNA template used in the reconstituted complex. These two complexes displayed very similar hydrodynamic behavior as judged by sedimentation velocity analysis. By combining these data with electron microscopy analysis, it was shown that the salt-dependent folding of oligonucleosomes in the absence of linker histones involves the bending of the linker DNA region connecting adjacent nucleosomes. It was also found that selective removal by trypsin of the N-terminal regions ("tails") of the core histones prevents the oligonucleosome chains from folding. Thus, in the absence of these histone domains, the bending of the linker DNA necessary to bring the nucleosomes in contact is completely abolished. In addition to the complete lack of folding, removal of the histone tails results in an unwinding at low salt of a 20-base pair region at each flanking side of the nucleosome core particle. The possible functional relevance of these results is discussed.  相似文献   

3.
A J Adler  E C Moran  G D Fasman 《Biochemistry》1975,14(19):4179-4185
Two histones from calf thymus, the slightly lysine-rich histone f2a2 and the arginine-rich f3, were combined separately, with homologous DNA. The complexes were reconstituted by means of guanidine hydrochloride gradient dialysis, and their circular dichroic (CD) spectra were examined in 0.14 M NaCl. The CD spectra of f2a2-DNA complexes are characterized by a positive band at 272 nm which is blue-shifted and greatly enhanced relative to the corresponding band for native DNA. This type of CD change was noted previously with f2a1-DNA and f2b-DNA complexes. In contrast, f3 histone causes only minor distortions in the DNA CD spectrum, and their character depends upon the state of the two sulfhydryl groups in f3. When the cysteines are reduced, f3-DNA complexes have a slightly increased positive band with a small blue shift; when oxidized disulfide is the predominant form, this CD band becomes slightly smaller than native DNA value. This laboratory has now examined complexes reconstituted from DNA and all five histones of calf thymus. The sum of the CD spectra of these complexes, although very similar to the CD curve for reconstituted complexes containing whole histone, does not approximate that of chromatin; the consequence of this observation is discussed.  相似文献   

4.
Rat liver chromatin was fractionated into DNA, histones and non-histone chromosomal proteins and each component was modified with N-methyl-l-N'-nitro-N-nitrosoguanidine of N-ethyl-N'-nitrosoguanidine. The radioactivity of 14C-labeled alkyl or guanidino moieties of both compounds bound significantly to both histones and non-histone chromosomal proteins and the binding of N-methyl-N'-nitro-N-nitrosoguanidine was higher than N-ethyl-N'-nitro-N-nitrosoguanidine. However the binding of both compounds to DNA was very low and its significance was hard to evaluate. All of the three components, one of which was modified, were reconstituted into chromatin, then, [3H]UMP incorporation into acid insoluble material using Escherichia coli RNA polymerase (EC 2.7.7.6) was measured. Only with the reconstituted chromatin containing histones modified either by N-methyl-N'-nitro-N-nitrosoguanidine or N-ethyl-N'-nitro-N-nitrosoguanidine, the template activity increased drastically; i.e., about 10 or 5 times higher than that with the unmodified reconstituted chromatin, respectively. However, any remarkable alteration in the electrophoretic pattern of protein fraction of the reconstituted chromatin could not be found. The results obtained in this study are discussed in the context that the modified histones could give rise to change in the mutual interaction of chromosomal components during the reconstitution of chromatin accompanied with the increase of chromatine template activity.  相似文献   

5.
Linker histones play a fundamental role in determining higher order chromatin structure as a consequence of their association with nucelosomal DNA. Yet the locations and structural consequences of linker histone binding are still enigmatic. Here, using cryo-atomic force microscopy, we show that the linker histone H5 in native chromatin and in chromatosomes reconstituted on the 5S rDNA template is located at the dyad of the nucleosome core particle, within the "stem" structure. Direct measurement also indicates that the length of free linker DNA between chromatosomes in native chromatin is approximately 30 bp, slightly shorter than that estimated from nuclease digestion assays.  相似文献   

6.
A comparative study of the condensation of reconstituted complexes of circular SV40 DNA with core histones from calf thymus and sea urchin sperm was performed using sedimentation and electron microscopic techniques. It is shown that in low ionic strength solutions both types of complexes are similar to native minichromosomes. In the region from 0.08 to 0.16 M NaCl the complexes of SV40 DNA with thymus histones form small compact particles. By contrast, the compaction of the SV40 DNA complexes with sperm histones results in the formation of giant intermolecular associates. The results obtained may mean that histone H2B of sea urchin sperm participates in the formation of a higher order structure in sperm chromatin.  相似文献   

7.
BACKGROUND: Linker histones constitute a family of lysine-rich proteins associated with nucleosome core particles and linker DNA in eukaryotic chromatin. In permeabilized cells, they can be extracted from nuclei by using salt concentration in the range of 0.3 to 0.7 M. Although other nuclear proteins are also extracted at 0.7 M salt, the remaining nucleus represents a template that is relatively intact. METHODS: A cytochemical method was used to study the affinity of reconstituted linker histones for chromatin in situ in cultured human fibroblasts. We also investigated their ability to condense chromatin by using DNA-specific osmium ammine staining for electron microscopy. RESULTS: Permeabilized and H1-depleted fibroblast nuclei were suitable for the study of linker histone-chromatin interactions after reconstitution with purified linker histone subfractions. Our results showed that exogenous linker histones bind to chromatin with lower affinity than the native ones. We detected no significant differences between the main H1 and H1 degrees histone fractions with respect to their affinity for chromatin or in their ability to condense chromatin. CONCLUSIONS: Linker histone interactions with chromatin are controlled also by mechanisms independent of linker histone subtype composition.  相似文献   

8.
Metabolically labeled non-histone chromosomal proteins of high specific activity were fractionated on the basis of their sequential extractability from Krebs II chromatin with urea/salt solutions according to Bekhor et al. (1974a). The binding of each of these NHCP2 classes to protein-free DNA and histone-DNA complexes (nucleohistone) was measured and compared to the binding to DNA substituted with 5-bromo-2′-deoxyuridine. After reconstitution of the interacting components, the binding of NHCP and histones was measured according to Scatchard formalism by titration of fixed amounts of DNA with increasing inputs of protein ligands under stringent conditions of 0.25 ionic strength, pH 8.0. Histone binding to either native DNA or BrUrd-substituted DNA was found to be essentially the same. In the presence of histones, the binding for all NHCP classes, except for medium 3 NHCP, was enhanced by an order of magnitude over the binding values for NHCP to DNA in the absence of histones. The binding of NHCP to DNA was thus strongly influenced by histones bound to DNA. A general and significant decrease in histone content in the complexes relative to increased NHCP binding was also apparent, with medium 3 NHCP having the greatest activity to weaken histone interaction with DNA and medium 0 the least. Enhancement in NHCP binding to BrUd-substituted DNA in the presence of histones was decreased to about 50% of the binding to control DNA. The distribution and quantity of DNA binding and non-DNA binding NHCP was also estimated by photochemical attachment to 33% BrUrd-substituted DNA in tryptophan-labeled chromatin and by direct binding assays. We have obtained 30% crosslinking for either histones or NHCP to DNA in stringently formed complexes. In histone-NHCP-DNA complexes, histone crosslinking remained unchanged, while that of NHCP increased to 70%. This is further evidence for a modification in the binding of NHCP to DNA in the presence of histones. The percentage of NHCP crosslinked to DNA in native chromatin ranged from 24% for medium 0 NHCP to 50% for medium 1 and 3 NHCP with an average of 35% for total NHCP. These results plus the direct binding assays indicate that NHCP, in addition to high affinity DNA binding, also interacts non-specifically to DNA and to proteins in chromatin. A mechanism is also being proposed to account for the observed BrUrd effects in chromatin.  相似文献   

9.
10.
Chicken erythrocyte chromatins containing a single species of linker histone, H1 or H5, have been prepared, using reassembly techniques developed previously. The reconstituted complexes possess the conformation of native chicken erythrocyte chromatin, as judged by chemical and structural criteria; saturation is reached when two molecules of linker histone are bound per nucleosome, as in native erythrocyte chromatin, which the resulting material resembles in its appearance in the electron microscope and quantitatively in its linear condensation factor relative to free DNA. The periodicity of micrococcal nuclease-sensitive sites in the linker regions associated with histone H1 or H5 is 10.4 base pairs, suggesting that the spatial organization of the linker region in the higher-order structure of chromatin is similar to that in isolated nucleosomes. The susceptible sites are cut at differing frequencies, as previously found for the nucleosome cores, leading to a characteristic distribution of intensities in the digests. The scission frequency of sites in the linker DNA depends additionally on the identity of the linker histone, suggesting that the higher-order structure is subject to secondary modulation by the associated histones.  相似文献   

11.
We describe a method to reconstitute chromatin complexes from reversed-phase high-performance liquid chromatography (HPLC)-purified histones. The complexes reconstituted in this way exhibit the same structural characteristics as their equivalent native counterparts. Furthermore, this method works independently of the acid- or salt-extracted origin of the histones used for the HPLC fractionation. The potential of this method for the reconstitution of chromatin particles consisting of sequence-defined DNA templates and well-defined histone variants and/or their posttranslationally modified isoforms is discussed.  相似文献   

12.
13.
K B Palter  V E Foe  B M Alberts 《Cell》1979,18(2):451-467
Using histones reconstituted with RNA and DNA celluloses, we have shown elsewhere that histones elute identically with salt from single- and double-stranded DNA, but differently from RNA (Palter and Alberts, 1979). In this paper we characterize further the suspected specific binding interactions between histones and single-stranded DNA. Nuclease digestion of complexes of histone reconstituted with single-stranded DNA generates only a small yield of discrete (approximately 9S) particles. We can, however, efficiently obtain such 9S "nucleosome-like" complexes when nuclease treatment is avoided and histones are reconstituted directly with short single-stranded DNA pieces. Strikingly, these 9S subunits contain an equimolar composition of the four nucleosomal histones. When these subunits are visualized in the electron microscope, they appear as globular particles which are morphologically indistinguishable from normal mononucleosomes. Based on their sedimentation properties, histone-to-DNA ratio, histone composition and particle diameter, we conclude that they represent an octamer of the four histones (containing two molecules of each histone) associated with single-stranded DNA. These data, viewed in the context of other information concerning chromatin, suggest that nucleosome cores may become transiently bound to single strands of DNA as DNA and RNA polymerases pass.  相似文献   

14.
The structural role of histone H2B from sea urchin sperm (H2Bsp) has been examined in experiments on reconstitution of chromatin from DNA and core histones taken in three variants: (1) four core histones from sea urchin sperm; (2) four core histones from calf thymus; (3) (H3, H4, H2A) from calf thymus and H2Bsp. It is shown that H2Bsp when present in reconstituted chromatin induces its aggregation. Fidelity of the reconstitution of nucleosomes has been tested using DNase I probe, one- and two-dimensional electrophoresis and electron microscopy. The reconstitutes that contain H2Bsp appear under electron microscope mainly as regular closely spaced large granules, about 450 A in diameter, which are very similar to the granules found in "native" sea urchin sperm chromatin. The reconstitutes formed by four core histones from calf thymus appear as randomly arranged particles, about 100 A in diameter. We conclude that histone H2Bsp participates in interactions between nucleosomes and is involved in the formation of the condensed supranucleosomal structure in sea urchin sperm chromatin.  相似文献   

15.
16.
1. The turnover of cerebral histones and DNA after injection of [4,5-(3)H]leucine or [methyl-3-(3)H]thymidine, respectively, was studied in the developing chick. 2. Chromatin was prepared from chick nuclei that had been purified by centrifugation through 1.9m-sucrose. 3. Nuclear proteins were fractionated into three major histone classes, F1 (lysine-rich), F2(b) (slightly lysine-rich) and [F3+F2(a)] (arginine-rich), and a non-histone protein residue. 4. The proportions of the histone classes remained constant throughout the period of development studied. 5. All histone fractions decayed at a similar rate, initially with a half-life of around 5 days, later with a half-life of 19 days. 6. Non-histone proteins from chromatin decayed in a heterogeneous manner with a wide range of half-lives. 7. Short-term labelling studies showed that all histone fractions were synthesized at the same rate. 8. Some non-histone proteins were very rapidly synthesized relative to histones. 9. DNA had a longer half-life than any histone fraction studied. A biphasic exponential decay curve with half-lives of 23 and 50 days was found. 10. It was concluded that the turnover of histones can occur independently of that of DNA and that different histone classes have similar rates of synthesis and decay.  相似文献   

17.
Non-histone protein-DNA complexes with acceptor activity for estradiol-receptor complexes were reconstituted from fractionated calf uterine chromatin. Acceptor activity had tissue specificity with target tissue binding exceeding non-target tissue binding. The binding of estradiol-receptor complexes to acceptor sites was dependent on intact non-histone protein-DNA complexes, reconstituted select non-histone proteins, and protein equivalent: DNA reconstitution ratios. [3H]Estradiol-receptor complexes were bound to reconstituted non-histone protein-DNA complexes (i.e., nucleoacidic protein) with a high affinity and with a limited number of binding sites. Fractionation of uterine chromatin non-histone proteins identified two major sets of non-histone proteins which had acceptor activity when reconstituted with DNA. Thus, it seems possible to reconstitute nucleoacidic protein fractions with specific acceptor activity for the calf uterine estrogen receptor.  相似文献   

18.
Specific folding and contraction of DNA by histones H3 and H4.   总被引:26,自引:0,他引:26  
M Bina-Stein  R T Simpson 《Cell》1977,11(3):609-618
We demonstrate that the arginine-rich histones H3 and H4 can introduce torsional constraints on closed circular DNA with a concomitant compaction of the nucleic acid. SV40 DNA I complexed with H3 and H4 appears relaxed in electron micrographs and contains particles of 75 +/- 10 A in diameter along the DNA. SV40 DNA I is contracted 2.75 +/- 0.25 fold by all the four smaller histones and 2.6 +/- 0.4 fold by H3 and H4 alone. The arginine-rich histones can cause the topological equivalent of unwinding the DNA close to one Watson-Crick turn per particle formed. Spherical nucleoprotein complexes morphologically similar to isolated nu bodies or nucleosomes are obtained by association of H3 and H4 with 140 base pair length DNA isolated from chromatin core particles. These reconstituted particles sediment at 9.8S, as compared to 10.8S for native core particles, and contain a tetramer of the arginine-rich histones. None of these specific alterations in DNA structure is seen om complexing the slightly lysine rich-histones H2A and H2B to DNA. Our data provide further evidence indicating that the arginine-rich histones are the major determinants of the architecture of DNA within the chromatin core particle.  相似文献   

19.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号