首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial conversion of plant biomass to value-added products is an attractive option to address the impacts of petroleum dependency. In this study, a bacterial system was developed that can hydrolyze xylan and utilize xylan-derived xylose for growth and production of polyhydroxyalkanoates (PHAs). A β-xylosidase and an endoxylanase were engineered into a P(LA-co-3HB)-producing Escherichia coli strain to obtain a xylanolytic strain. Although PHA production yields using xylan as sole carbon source were minimal, when the xylan-based media was supplemented with a single sugar (xylose or arabinose) to permit the accumulation of xylan-derived xylose in the media, PHA production yields increased up to 18-fold when compared to xylan-based production, and increased by 37 % when compared to production from single sugar sources alone. 1H-Nuclear magnetic resonance (NMR) analysis shows higher accumulation of xylan-derived xylose in the media when xylan was supplemented with arabinose to prevent xylose uptake by catabolite repression. 1H-NMR, gel permeation chromatography, and differential scanning calorimetry analyses corroborate that the polymers maintain physical properties regardless of the carbon source. This study demonstrates that accumulation of biomass-derived sugars in the media prior to their uptake by microbes is an important aspect to enhance PHA production when using plant biomass as feedstock.  相似文献   

2.
For economical lignocellulose-to-ethanol production, a desirable biocatalyst should tolerate inhibitors derived from preteatment of lignocellulose and be able to utilize heterogeneous biomass sugars of hexoses and pentoses. Previously, we developed an inhibitor-tolerant Saccharomyces cerevisiae strain NRRL Y-50049 that is able to in situ detoxify common aldehyde inhibitors such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF). In this study, we genetically engineered Y-50049 to enable and enhance its xylose utilization capability. A codon-optimized xylose isomerase gene for yeast (YXI) was synthesized and introduced into a defined chromosomal locus of Y-50049. Two newly identified xylose transport related genes XUT4 and XUT6, and previously reported xylulokinase gene (XKS1), and xylitol dehydrogenase gene (XYL2) from Scheffersomyces stipitis were also engineered into the yeast resulting in strain NRRL Y-50463. The engineered strain was able to grow on xylose as sole carbon source and a minimum ethanol production of 38.6?g?l?1 was obtained in an anaerobic fermentation on mixed sugars of glucose and xylose in the presence of furfural and HMF.  相似文献   

3.
Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-14C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-14C]xylose released all the radioactivity as xylose. -1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4- xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[14C]xylose and tri-O-methyl-[14C]xylose, suggesting a 14-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg2+ and Mn2+ ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.  相似文献   

4.
Summary A novel yeast strain, NCIM 3574, isolated from a decaying wood produced up to 570 IU ml–1 of xylanolytic enzymes when grown on medium containing 4% xylan. The yeast strain also produced xylanase activity (40–50 IU ml–1) in the presence of soluble carbon sources like xylose or arabinose. No xylanase activity was detected when the organism was grown on glucose. The crude xylanase preparation showed no activity towards cellulolytic substrates but low levels of -xylosidase (0.1 IU ml–1) and -l-arabinofuranosidase (0.05 IU ml–1) were detected. The temperature and pH optima for the crude xylanase preparation were 55°C and 4.5 respectively. The crude xylanase produced mainly xylose from xylan within 5 min. Prolonged hydrolysis of xylan produced xylobiose and arabinose, in addition to xylose, as the end products. The presence of arabinose as one of the end products in xylan hydrolysate could be due to the low levels of arabinofuranosidase enzyme present in the crude fermentation broth.  相似文献   

5.
Statistical modeling and optimization of dilute sulfuric acid hydrolysis of potential energy crop giant reed (Arundo donax L.) has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of xylan polysaccharide conversion to xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis. The monomeric xylose recovery ca. 94% (vs. 93% predicted) was achieved under optimized hydrolysis conditions (1.27% acid concentration, 141.6 °C and 36.4 min), confirming the high validity of the developed model. The low content of glucose (2.7%) and monosaccharide degradation products (0.9% furfural and 0.7% 5-hydroxymethylfurfural) provided a high quality xylose-rich subtract, ready for subsequent biochemical conversion to value-added products. The solid xylan-free residue was easily converted to fermentable sugars resulting in cellulose digestibility of 70% vs. 9% for untreated biomass.  相似文献   

6.
Hemicellulose-type polysaccharides were isolated from the pericarp of seeds of Argania spinosa (L.) Skeels fruit by sequential alkaline extractions and fractionated by precipitation. Water soluble and water insoluble fractions were obtained, purified and characterized by sugar analysis and 1H and 13C NMR spectroscopy. The water soluble fractions were assumed to be (4-O-methyl-D-glucurono)-D-xylans, with 4-O-methyl-D-glucopyranosyluronic acid groups linked to C-2 of a (1-->4)-beta-D-xylan. The 1H NMR spectrum showed that the water soluble xylans have, on average, one non-reducing terminal residue of 4-O-methyl-D-glucuronic acid for every seven xylose units. The water insoluble fractions consisted of a neutral xylan with linear (1-->4)-beta-D-xylopyranosyl units.  相似文献   

7.
8.
Xylans were isolated from the pericarp of prickly pear seeds of Opuntia ficus-indica (OFI) by alkaline extraction, fractionated by precipitation and purified. Six fractions were obtained and characterized by sugar analysis and NMR spectroscopy. They were assumed to be (4-O-methyl-d-glucurono)-d-xylans, with 4-O-α-d-glucopyranosyluronic acid groups linked at C-2 of a (1→4)-β-d-xylan. The sugar composition and the 1H and 13C NMR spectra showed that their chemical structures were very similar, but with different proportions of d-Xyl and 4-O-Me-d-GlcA. Our results showed that, on average, the water soluble xylans have one nonreducing terminal residue of 4-O-methyl-d-glucuronic acid for every 11 to 14 xylose units, whereas in the water non-soluble xylans, xylose units can varied from 18 to 65 residues for one nonreducing terminal residue of 4-O-methyl-d-glucuronic acid.  相似文献   

9.
Rhizodeposition, i.e. the release of carbon into the soil by growing roots, is an important part of the terrestrial carbon cycle. However thein situ nature and dynamics of root-derived carbon in the soil are still poorly understood. Here we made an investigation of the latter in laboratory experiments using13CO2 pulse chase labelling of wheat (Triticum aestivum L.). We analyzed the kinetics of13C-labelled carbon and more specially13C carbohydrates in the rhizosphere. Wheat seedlings-soil mesocosms were exposed to13CO2 for 5 hours in controlled chambers and sampled repeatedly during two weeks for13C/C analysis of organic carbon. After a two-step separation of the soil from the roots, the amount of total organic13C was determined by isotope ratio mass spectrometry as well as the amounts of13C in arabinose, fructose, fucose, glucose, galactose, mannose, rhamnose and xylose. The amount and isotopic ratio of monosaccharides were obtained by capillary gas chromatography coupled with isotope ratio mass spectrometry (GC/C/IRMS) after trimethyl-silyl derivatization. Two fractions were analyzed : total (hydrolysable) and soluble monomeric (water extractable) soil sugars. The amount of organic13C found in the soil, expressed as a percentage of the total photosynthetically fixed13C at the end of the labelling period, reached 16% in the day following labelling and stabilised at 9% after one week. We concluded that glucose under the form of polymers was the dominant moietie of rhizodeposits. Soluble glucose and fructose were also present. But after 2 days, these soluble sugars had disappeared. Forty percent of the root-derived carbon was in the form of neutral sugars, and exhibited a time-increasing signature of microbial sugars. The composition of rhizospheric sugars rapidly tended towards that of bulk soil organic matter.  相似文献   

10.
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200°C and 5–20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R 2 = 0.8861) and for ethanol production (R 2 = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190°C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.  相似文献   

11.
12.
Diabetes mellitus is a group of complicated metabolic disorders characterized by high blood glucose level and inappropriate insulin secreting capacity due to decreased glucose metabolism and pancreatic β cell mass or dysfunction of β cells. Thus, improving glucose metabolism and preserving β cell mass and function might be useful for the treatment of diabetes. In this study, a novel acidic polysaccharide LBP-s-1 extracted from Lycium barbarum L. was obtained by purification using macroporous resin and ion-exchanged column. Monosaccharide composition analysis indicated that LBP-s-1 was comprised of rhamnose, arabinose, xylose, mannose, glucose, galactose, galacturonic acid in the molar ratio of 1.00:8.34:1.25:1.26:1.91:7.05:15.28. The preliminary structure features of LBP-s-1 were investigated by FT-IR, 1H NMR and 13C NMR. In vitro and in vivo hypoglycemic experiments showed that LBP-s-1 had significant hypoglycemic effects and insulin-sensitizing activity through increasing glucose metabolism and insulin secretion and promoting pancreatic β cell proliferation. Preliminary mechanisms were also elucidated.  相似文献   

13.
Coxon B 《Carbohydrate research》2005,340(10):1714-1721
Complete 1H and 13C NMR chemical shift assignments have been generated from a series of acetamidodeoxy and aminodeoxy sugar derivatives. For free sugars, the enhanced sensitivity of an NMR cryoprobe allowed simple 1D and 2D NMR spectra to be obtained from essentially single anomers, before significant mutarotation had occurred. The NMR assignments have been used to characterize deuterium isotope effects on 13C chemical shifts measured under conditions of slow NH to ND exchange in single solutions. Within a range of 0 to −0.138 ppm, β, γ, δ, and ζ deuterium isotope effects have been observed, thus providing additional reference data for assignment of the 13C NMR spectra of nitrogenous saccharides.  相似文献   

14.
The structures of water-soluble birch and beech xylans, extracted from holocellulose using dimethyl sulfoxide, were determined employing 1H and 13C NMR spectroscopy together with chemical analysis. These polysaccharides were found to be O-acetyl-(4-O-methylglucurono)xylans containing one 4-O-methylglucuronic acid substituent for approximately every 15 D-xylose residues. The average degree of acetylation of the xylose residues in these polymers was 0.4. The presence of the structural element -->4)[4-O-Me-alpha-D-GlcpA-(1-->2)][3-O-Ac]-beta-D-Xylp-(1--> was demonstrated. Additional acetyl groups were present as substituents at C-2 and/or C-3 of the xylopyranosyl residues. Utilizing size-exclusion chromatography in combination with mass spectroscopy, the weight-average molar masses (and polydispersities) were shown to be 8000 (1.09) and 11,100 (1.08) for birch and beech xylan, respectively.  相似文献   

15.
The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl?1 xylose, 30.0 gl?1 glucose and in both sugars mixture (30.0 gl?1 xylose and 2.0 gl?1 glucose). The vacuum evaporated hydrolysate (80 gl?1) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite®). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30°C. The maximum XR (0.618 Umg Prot ?1 ) and XDH (0.783 Umg Prot ?1 ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl?1) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.  相似文献   

16.
We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and 13C-metabolic flux analysis (13C-MFA) with [1,6-13C]glucose, [5-13C]xylose, and [1,6-13C]glucose+[5-13C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90 °C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81 °C, the maximum growth rate on glucose and xylose was 0.44 and 0.46 h−1, respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. 13C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, 13C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, 13C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.  相似文献   

17.
Sun XF  Xu F  Zhao H  Sun RC  Fowler P  Baird MS 《Bioresource technology》2005,96(12):1342-1349
Seven residual hemicellulosic preparations (19.6-45.0% of the original hemicelluloses) were extracted from wheat straw pre-treated with various organic solvents using 1.8% H2O2-0.18% cyanamide at 50 degrees C and pH 10.0 for 4 h. Their chemical compositions and physicochemical properties were determined using GC, HPLC, GPC, FT-IR and 13NMR spectroscopy. The results indicated that all the residual hemicellulosic preparations were heteropolysaccharides containing xylose, glucose, arabinose, galactose, mannose, rhamnose and 4-O-methyl-alpha-D-glucopyranosyluronic acid. The predominant monosaccharide was xylose, ranging between 67.7% and 81.9% of the total neutral sugars, composed mainly of L-arabino-(4-O-methyl-D-glucurono)-D-xylan. The content of contaminant lignin in the isolated residual hemicelluloses was 2.89-5.31%. The Mw values of the two residual hemicellulosic preparations H6 and H7 (42,710 and 44,080 g mol-1, respectively) obtained from the aqueous-alcohol pre-treated straw were much higher than those of H1-H5 (12,980-15,950 g mol-1) extracted from the organic acid pre-treated straw.  相似文献   

18.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

19.
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Matsuhiro  Betty  Urzúa  Carlos C. 《Hydrobiologia》1996,326(1):491-495
Palmaria decipiens, one of the most abundant red seaweeds of the chilean Antarctic, was collected in King George Island. The hot water extract (26% yield) showed by acid hydrolysis to contain xylose, galactose and traces of glucose. Fractionation with cetrimide gave a soluble neutral xylan and an insoluble fraction. The insoluble fraction afforded an acidic polysaccharide that contained 4.8% of uronic acids, 2.8% of sulfate and 18.9% of protein. Polyacrylamide gel electrophoresis showed that it was homogeneous. The GLC and HPLC analysis of the total acidic hydrolysis products showed that the acidic polysaccharide was composed of the neutral sugars galactose and xylose in the molar ratio 8.2:1.0 and of galacturonic and glucuronic acid in the ratio 1.5:1.0. The second-derivative FT-IR spectrum showed the characteristic amide I, II and III bands of proteins. Alkaline cleavage with 0.1 M NaOH indicated the presence of a glycoprotein with O-glycosidic linkage.Results found in this work suggest that the acidic polysaccharide extracted from Palmaria decipiens is an acidic xylogalactan-protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号