首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoswitching behaviour of the green fluorescent protein (GFP) chromophore and its analogs opens up exciting horizons for the engineering and development of molecular devices for high sensitivity in vivo studies. In this work we present the synthesis and photophysical study of four GFP chromophore analogs belonging to butenolide and pyrrolinone classes. These chromophores possess an intriguing photoinduced cistrans isomerization mechanism. Stereochemical structural assignment was unambiguously performed by 1D Nuclear Overhauser Effect NMR measurements. The spectroscopic properties of both cis and trans isomers were studied, and photoconversion quantum yield for cistrans isomerization was assessed to be in the 0.1–0.4 range. Finally, the 3JC,H coupling constant in the 13C–C=C–H motif was in excellent agreement with theoretical DFT calculations, thus providing a further confirmation of cistrans photoisomerization of the structurally analog GFP chromophore.  相似文献   

2.
We describe a solid vegetable oil–water gel structure which is stabilized through the use of low concentrations of monoglycerides, containing no added trans fats or saturated fats. The resulting structure consists of oil droplets encapsulated in self-assembled crystalline monoglyceride multilayers, surrounded by a continuous water phase. Acute ingestion human feeding trials indicated that the serum triglyceride loading was significantly lower after ingestion of the structured gel rather than a simple oil–water mixture, resulting in an attenuated increase in serum insulin. This indicates the effectiveness of encapsulation in modulating blood lipid and insulin response in humans, and suggests a strategy that can be employed for the controlled release of food macronutrients. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
It has long been understood that the proline residue has lower configurational entropy than any other amino acid residue due to pyrrolidine ring hindrance. The peptide bond between proline and its preceding amino acid (Xaa-Pro) typically exists as a mixture of cis- and trans-isomers in the unfolded protein. Cis–trans isomerization of Xaa-Pro peptide bonds are infrequent, but still occur in folded proteins. Therefore, the effects of the cis–trans isomerization equilibrium in both unfolded and folded states should be taken into account when estimating the stability contribution of a specific proline residue. In order to study the stability contribution of the four proline residues to the hyperthermophilic protein Ssh10b, in this work, we expressed and purified a series of Pro→Ala mutants of Ssh10b, and performed correlative unfolding experiments in detail. We proposed a new unfolding model including proline isomerization. The model predicts that the contribution of a proline residue to protein stability is associated with the thermodynamic equilibrium between cis- and trans-isomers both in the unfolded and folded states, agreeing well with the experimental results.  相似文献   

4.
A 9-hexadecenoic acid cis-trans isomerase (9-isomerase) that catalyzed the cis-to-trans isomerization of the double bond of free 9-cis-hexadecenoic acid [16:1(9c)] was purified to homogeneity from an extract of Pseudomonas sp. strain E-3 and characterized. Electrophoresis of the purified enzyme on both incompletely denaturing and denaturing polyacrylamide gels yielded a single band of a protein with a molecular mass of 80 kDa, suggesting that the isomerase is a monomeric protein of 80 kDa. The 9-isomerase, assayed with 16:1(9c) as a substrate, had a specific activity of 22.8 μmol h–1 (mg protein)–1 and a K m of 117.6 mM. The optimal pH and temperature for catalysis were approximately pH 7–8 and 30° C, respectively. The 9-isomerase catalyzed the cis-to-trans conversion of a double bond at positions 9, 10, or 11, but not that of a double bond at position 6 or 7 of cis-mono-unsaturated fatty acids with carbon chain lengths of 14, 15, 16, and 17. Octadecenoic acids with a double bond at position 9 or 11 were not susceptible to isomerization. These results suggest that 9-isomerase has a strict specificity for both the position of the double bond and the chain length of the fatty acid. The enzyme catalyzed the cis-to-trans isomerization of fatty acids in a free form, and in the presence of a membrane fraction it was also able to isomerize 16:1(9c) esterified to phosphatidylethanolamine. The 9-isomerase was strongly inhibited by catecholic antioxidants such as α-tocopherol and nordihydroguaiaretic acid, but was not inhibited by 1,10-phenanthroline or EDTA or under anoxic conditions. Based on these results, the possible mechanism of catalysis by this enzyme is discussed. Received: 21 May 1997 / Accepted: 5 September 1997  相似文献   

5.
6.
The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr–Purcell–Meiboom–Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k ex = 500–2000 s−1 were typically observed in APO-rMUP for residues located adjacent to a β-turn comprising residues 83–87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local ‘breathing’ motions rather than a concerted global conformational change. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR–DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR–DP domains. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11–18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, α-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], γ-linolenic acid (cis-6,cis-9,cis-12–18:3), columbinic acid (trans-5,cis-9,cis-12–18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from α-linolenic acid, which were identified as cis-9,trans-11,cis-15–18:3, trans-9,trans-11,cis-15–18:3, and trans-10,cis-15–18:2. Four major fatty acids were produced from γ-linolenic acid, which were identified as cis-6,cis-9,trans-11–18:3, cis-6,trans-9,trans-11–18:3, cis-6,trans-10–18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from α-linolenic acid and γ-linolenic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Suggestive but not decisive evidence indicates that in vivo peptide chain folding is completed in a time not much longer than that required for covalent peptide synthesis. Extrapolation of model peptide rates of the cistrans prolyl isomerization leads to the prediction tht protein folding should be much slower than the apparent in vivo rates. On the assumption that rapid protein folding in vivo is the rule, three routes are suggested by which a protein undergoing biosynthesis can avoid a strongly slowed folding rate: (1) by a peptide chain-elongation process that adds only trans peptide bonds, follwed by a rapid folding process that incorporates them into a three-dimensional structure, raising the energy barrier to isomerization; (2) by folding to produce three dimensional structures that position prolyl residues largely in chain turns on the protein surface, where the residue may be either cis or trans without large effects on the protein structure and function; (3) prolyl cistrans isomerization may be speeded by the formation of peptide loops.  相似文献   

10.
11.
The protein folding process is often in vitro rate‐limited by slow cis‐trans proline isomerization steps. Importantly, the rate of this process in vivo is accelerated by prolyl isomerases (PPIases). The archetypal PPIase is the human cyclophilin 18 (Cyp18 or CypA), and Arg 55 has been demonstrated to play a crucial role when studying short peptide substrates in the catalytic action of Cyp18 by stabilizing the transition state of isomerization. However, in this study we show that a R55A mutant of Cyp18 is as efficient as the wild type to accelerate the refolding reaction of human carbonic anhydrase II (HCA II). Thus, it is evident that the active‐site located Arg 55 is not required for catalysis of the rate‐limiting prolyl cis‐trans isomerization steps during the folding of a protein substrate as HCA II. Nevertheless, catalysis of cis‐trans proline isomerization in HCA II occurs in the active‐site of Cyp18, since binding of the inhibitor cyclosporin A abolishes rate acceleration of the refolding reaction. Obviously, the catalytic mechanisms of Cyp18 can differ when acting upon a simple model peptide, four residues long, with easily accessible Pro residues compared with a large protein molecule undergoing folding with partly or completely buried Pro residues. In the latter case, the isomerization kinetics are significantly slower and simpler mechanistic factors such as desolvation and/or strain might operate during folding‐assisted catalysis, since binding to the hydrophobic active site is still a prerequisite for catalysis.  相似文献   

12.
The influence of lithium cations on the cis/trans isomerization of prolyl peptide bonds was investigated in a quantitative manner in trifluoroethanol (TFE) and acetonitrile, employing NMR techniques. The focus was on various environmental and structural aspects, such as lithium cation and water concentrations, the type of the partner amino acid in the prolyl peptide bond, and the peptide sequence length. Comparison of the thermodynamic parameters of the isomerization in LiCl/TFE and TFE shows a lithium cation concentration dependence of the cis/trans ratio, which saturates at cation concentrations >200 mM. A pronounced increase in the cis isomer content in the presence of lithium cations occurs with the exception of peptides with Gly‐Pro and Asp‐Pro moieties. The cation effect appears already at the dipeptide level. The salt concentration can considerably be reduced in solvents with a lower number of nucleophilic centers like acetonitrile. The lithium cation effect decreases with small amounts of water and disappears at a water concentration of about 5%. The isomerization kinetics under the influence of lithium cations suggests a weak cation interaction with the carbonyl oxygen of the peptide bond. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Combined multidimensional nuclear magnetic resonance spectroscopy and electrospray mass spectrometry was used to analyze the platinated DNA adduct of the phase II anticancer drug [{trans-PtCl(NH3)2}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)4 (BBR3464) with [5′-d(ACG*TATACG*T)-3′]2. Two 1,2-interstrand cross-links were formed by concomitant binding of two trinuclear moieties to the oligonucleotide. The four DNA-bound platinum atoms coordinated in the major groove at N7 positions of guanines in the 3′ → 3′ direction and the central platinum unit is expected to lie in the DNA minor groove. This is the first report of such a DNA lesion. The melting temperature of the adduct is 76 °C and is 42 °C higher than that of the unplatinated DNA. The sugar residues of the platinated bases are in the N-type conformation and the G9 nucleoside is in the syn orientation, while the G3 nucleoside appears to retain the anti configuration. The secondary structure of DNA was significantly changed upon cross-linking of the two BBR3464 molecules. Base destacking occurs between A1/C2 and C2/G3 and weakened stacking is seen for the C8/G9 and G9/T10 bases. The lack of Watson–Crick base pairing is also seen for A1–T10 and C2–G9 base pairs, whereas Watson–Crick base pairs in the central sequence of the DNA (T4 → A7) are well maintained. While DNA repair proteins may “see” different platinated adducts as bulky “lesions”, the subtle differences involved in base pairing and stacking, as summarized here, may extend to their role as a substrate for repair enzymes. Thus, differences in protein recognition and repair efficiency among the various interstrand cross-links are likely and a subject worthy of detailed exploration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. K. Hollenstein and M. Comellas-Bigler contributed equally to this work.  相似文献   

15.
The manganese transport regulator (MntR) of Bacillus subtilis is a metalloregulatory protein responsible for regulation of genes involved in manganese uptake by this organism. MntR belongs to the iron-responsive DtxR family, but is allosterically regulated by manganese and cadmium ions. Having previously characterized the metal binding affinities of this protein as well as the DNA-binding activation profiles for the relevant metal ions, we have focused the current study on investigating the structural changes of MntR in solution upon binding divalent transition metal ions. Deuterium exchange mass spectrometry was utilized to investigate the deuterium exchange dynamics between apo-MntR, Co2+-MntR, Cd2+-MntR, and Mn2+-MntR. Comparing the rates of deuteration of each metal-bound form of MntR reveals that the N-terminal DNA-binding motif is more mobile in solution than the C-terminal dimerization domain. Furthermore, significant protection from deuterium exchange is observed in the helices that contribute metal-chelating amino acids to form the metal binding site of MntR. In contrast, the bulk of the DNA-binding winged helix–turn–helix motif shows no difference in deuterium exchange upon metal binding. Mapping of the deuteration patterns onto the crystal structures of MntR yields insight into how metal binding affects the protein structure and complements earlier studies on the mechanism of MntR. Metal binding acts to rigidify MntR, thereby limiting the mobility of the protein and reducing the entropic cost of DNA binding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Several molecular dynamics simulations of S. aureus Tyrosyl-tRNA synthetase (TyrRS) in its free form and complexed with Tyr, ATP, tyrosyl adenylate and inhibitor respectively have been carried out to investigate the ligand-linked conformational stability changes associated with its catalytic cycle. The results show that unliganded S. aureus TyrRS samples a more relaxed conformational space than substrate-bound TyrRS. There are three high flexibility regions encompassing residues 114–118, 128–133, and 226–238 respectively. The region which includes the KMSKS motif (KFGKS in S. aureus TyrRS) shows the highest difference in fluctuations. Hydrogen bond network formed by Tyr, ATP, tyrosyl adenylate and inhibitor with S. aureus TyrRS is discussed. Our simulations suggest the induced-fit conformational changes of the KMSKS loop as follows: the KMSKS loop of substrate-free S. aureus TyrRS adopts an open conformation. The tyrosine binds in the pocket with the KMSKS loop balancing between semi-open and open forms. The ATP binding induces the KMSKS loop to the open form. After the Tyr-AMP is formed, the first two residues of KMSKS loop twists in an anticlockwise direction and drives the loop in a conformation similar to the closed one, while those of the last three GKS residues adopt a conformation between semi-open and open conformation. This conformational change may probably be involved in the initial tRNA binding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
We have measured water/n-octanol partition coefficients, pK a values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium–π-arene–chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Electrospray ionisation mass spectrometry was used to analyse the reactions of metal compounds with mixtures of selected proteins. Three representative medicinally relevant compounds, cisplatin, transplatin and the organometallic ruthenium compound RAPTA-C, were reacted with a pool of three proteins, ubiquitin, cytochrome c and superoxide dismutase, and the reaction products were analysed using high-resolution mass spectrometry. Highly informative electrospray ionisation mass spectra were acquired following careful optimisation of the experimental conditions. The formation of metal–protein adducts was clearly observed for the three proteins. In addition, valuable information was obtained on the nature of the protein-bound metallofragments, on their distribution among the three different proteins and on the binding kinetics. The platinum compounds were less reactive and considerably less selective in protein binding than RAPTA-C, which showed a high affinity towards ubiquitin and cytochrome c, but not superoxide dismutase. In addition, competition studies between cisplatin and RAPTA-C showed that the two metallodrugs have affinities for the same amino acid residues on protein binding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Aiming at the use of vitamin B12 as a drug delivery carrier for cytotoxic agents, we have reacted vitamin B12 with trans-[PtCl(NH3)2(H2O)]+, [PtCl3(NH3)] and [PtCl4]2−. These Pt(II) precursors coordinated directly to the Co(III)-bound cyanide, giving the conjugates [{Co}–CN–{trans-PtCl(NH3)2}]+ (5), [{Co}–CN–{trans-PtCl2(NH3)}] (6), [{Co}–CN–{cis-PtCl2(NH3)}] (7) and [{Co}–CN–{PtCl3}] (8) in good yields. Spectroscopic analyses for all compounds and X-ray structure elucidation for 5 and 7 confirmed their authenticity and the presence of the central “Co–CN–Pt” motif. Applicability of these heterodinuclear conjugates depends primarily on serum stability. Whereas 6 and 8 transmetallated rapidly to bovine serum albumin proteins, compounds 5 and 7 were reasonably stable. Around 20% of cyanocobalamin could be detected after 48 h, while the remaining 80% was still the respective vitamin B12 conjugates. Release of the platinum complexes from vitamin B12 is driven by intracellular reduction of Co(III) to Co(II) to Co(I) and subsequent adenosylation by the adenosyltransferase CobA. Despite bearing a rather large metal complex on the β-axial position, the cobamides in 5 and 7 are recognized by the corrinoid adenosyltransferase enzyme that catalyzes the formation of the organometallic C–Co bond present in adenosylcobalamin after release of the Pt(II) complexes. Thus, vitamin B12 can potentially be used for delivering metal-containing compounds into cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Defects in the human ALS2 gene, which encodes the 1,657-amino-acid residue protein alsin, are linked to several related motor neuron diseases. We created a structural model for the N-terminal 690-residue region of alsin through comparative modelling based on regulator of chromosome condensation 1 (RCC1). We propose that this alsin region contains seven RCC1-like repeats in a seven-bladed beta-propeller structure. The propeller is formed by a double clasp arrangement containing two segments (residues 1–218 and residues 525–690). The 306-residue insert region, predicted to lie within blade 5 and to be largely disordered, is poorly conserved across species. Surface patches of evolutionary conservation probably indicate locations of binding sites. Both disease-causing missense mutations—Cys157Tyr and Gly540Glu—are buried in the propeller and likely to be structurally disruptive. This study aids design of experimental studies by highlighting the importance of construct length, will enhance interpretation of protein–protein interactions, and enable rational site-directed mutagenesis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号